Skip to main content
Log in

Patterns of serotonin-immunoreactive neurons in the central nervous system of the earthworm Lumbricus terrestris L.

I. Ganglia of the ventral nerve cord

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The distribution of serotonin-immunoreactive cell bodies and fibers in the ventral nerve cord of the earthworm has been investigated from whole-mount preparations and serial sections. Serotonin-immunoreactive neurons are organized in seven soma groups per ganglion; these are defined by cell number, soma shape, diameter and fiber projections. Positional variations of this pattern have been studied quantitatively. The number of labeled perikarya is constant in midbody ganglia, but increases markedly rostral to the posterior margin of the clitellum. Variability of position and cell number differs between the cell groups. Stained nerve fibers could only be partially traced; their distribution is described in relation to defined neuronal fiber bundles and segmental nerves. The distribution and morphology of serotonin-immunoreactive cells are compared with previous observations, based on pattern analysis of primary catecholamines and indolamines with the use of a formaldehyde-induced fluorescence technique. The possible role of serotonin-immunoreactive nervous elements in different nerve cord compartments is discussed with respect to physiological effects of serotonin in earthworms and other invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CNS :

central nervous system

5-HT :

5-hydroxytryptamine, serotonin

5-HTi :

5-HT-immunoreactive

PAP :

peroxidaseantiperoxidase

SW :

segmental nerve

References

  • Anderson R, Fänge R (1967) Pharmacologic receptors of an annelid (Lumbricus terrestris). Arch Int Physiol Biochim 75:461–468

    Google Scholar 

  • Beltz B, Kravitz EA (1983) Mapping of serotonin-like immunoreactivity in the lobster nervous system. J Neurosci 3:585–602

    Google Scholar 

  • Bieger D, Hornykiewicz O (1972) Dopamine in the earthworm, Lumbricus terrestris: enhancement of rhythmic contractile activity. Neuropharmacology 11:745–748

    Google Scholar 

  • Bishop CA, O'Shea M (1982) Neuropeptide proctolin (H-ArgTry-Leu-Pro-Thor-OH): Immunocytochemical mapping of neurons in the central nervous system of the cockroach. J Comp Neurol 207:223–238

    Google Scholar 

  • Bishop CA, O'Shea M (1983) Serotonin immunoreactive neurons in the central nervous system of an insect (Periplaneta americana). J Neurobiol 14:251–269

    Google Scholar 

  • Botsford EF (1941) The effect of physostigmine on the responses of earthworm body wall preparations to successive stimuli. Biol Bull 80:299–323

    Google Scholar 

  • Brodfuehrer PD, Friesen WO (1984) A sensory system initiating swimming activity in the medicinal leech. J Exp Biol 108:341–355

    Google Scholar 

  • Ehinger B, Myhrberg HE (1971) Neuronal localization of dopamine, noradrenaline and 5-HT in the central and peripheral nervous system of Lumbricus terrestris (L.). Histochemistry 28:265–275

    Google Scholar 

  • Evans PD (1980) Biogenic amines in the insect nervous system. Adv Insect Physiol 15:317–475

    Google Scholar 

  • Falck B (1962) Observations on the possibilities of the cellular localization of monoamines by a fluorescence method. Acta Physiol Scand [Suppl] 56:197

    Google Scholar 

  • Falck B, Hillarp NA, Thieme G, Torp A (1962) Fluorescence of catecholamines and related compounds condensed with formaldehyde. J Histochem Cytochem 10:348–354

    CAS  Google Scholar 

  • Gardner CR (1976) The neuronal control of locomotion in the earthworm. Biol Rev 51:25–52

    Google Scholar 

  • Gardner CR, Cashin CH (1975) Some aspects of monoamine function in the earthworm (Lumbricus terrestris L.). Neuropharmacology 14:495–500

    Google Scholar 

  • Gardner CR, Walker RJ (1982) The roles of putative neurotransmitters and ncuromodulators in annelids and related invertebrates. Prog Neurobiol 18:81–120

    Google Scholar 

  • Glaser EM (1982) Snell'slaw: The bane of computer microscopists. J Neurosci Methods 5:201–202

    Google Scholar 

  • Goodmann CS (1977) Neuron duplications and deletions in locust clones and clutches. Science 197:1384–1386

    Google Scholar 

  • Gras H (1984a) A ‘hidden line’ algorithm for 3D-reconstruction from serial sections — an extension of the NEUREC program package for a microcomputer. Comput Programs Biomed 18:217–226

    Google Scholar 

  • Gras H (1984b) The tail flattening reflex in Lumbricus: Reconstitution after tail amputation and modifications in segmental nerve roots. J Neurobiol 15:249–261

    Google Scholar 

  • Gras H, Killmann F (1983) NEUREC — a program package for 3D-reconstruction from serial sections using a microcomputer. Comput Programs Biomed 17:145–156

    Google Scholar 

  • Günther J (1969) Zur Struktur and Funktion der Riesenfaser-Systeme bei Regenwurm Lumbricus terrestris L., mit Hinweisen auf die nervöse Organisation des Bauchmarks. Dissertation, Göttingen

  • Günther J (1971a) Der cytologische Aufbau der dorsalen Riesenfasern von Lumbricus terrestris L. Z Wiss Zool 183:51–70

    Google Scholar 

  • Günther J (1971b) Mikroanatomie des Bauchmarks von Lumbricus terrestris L. Z Morphol Tiere 70:141–182

    Google Scholar 

  • Günther J (1972) Giant motor neurons in the earthworm. Comp Biochem Physiol 197, 42A:967–973

    Google Scholar 

  • Günther J (1976) Impulse conduction in the myelinated giant fibers of the earthworm. Structure and function of the dorsal nodes in the median giant fiber. J Comp Neurol 168:505–532

    Google Scholar 

  • Günther J, Walther JB (1971) Funktionelle Anatomie der dorsalen Riesenfaser-Systeme von Lumbricus terrestris L. (Annelida, Oligochaeta). Z Morphol Tiere 70:253–280

    Google Scholar 

  • Horridge GA, Roberts MBV (1960) Neuromuscular transmission in the earthworm. Nature 186:650

    Google Scholar 

  • Hoyle G (1985) Neurotransmitters, neuromodulators, and neurohormones. In: Gilles R, Balthazart J (eds) Neurobiology. Springer, Berlin Heidelberg New York, pp 264–279

    Google Scholar 

  • Kerkut GA, Sedden CB, Walker JR (1967) Cellular localization of monoamines by fluorescence microscopy in Hirudo medicinais and Lumbricus terrestris. Comp Biochem Physiol 21:687–690

    Google Scholar 

  • Klemm N (1983) Detection of serotonin-containing neurons in the insect nervous system by antibodies to 5-HT. In: Strausfeld NJ (ed) Functional neuroanatomy. Springer, Berlin Heidelberg New York, pp 302–316

    Google Scholar 

  • Knapp MF (1970) Structural and physiological studies of the neurosensory and neuromuscular system of the earthworm Lumbricus terrestris L. and Allolobophora longa Ude. Dissertation, Leeds

  • Larsson LI (1981) Peptide immunocytochemistry. Prog Histochem Cytochem 13:1–85

    Google Scholar 

  • Lenhossék M v (1892) Ursprung, Verlauf und Endigung der sensilen Nervenfasern bei Lumbricus. Arch Mikrosk Anat 39:102–136

    Google Scholar 

  • Lent CM (1973) Neuronal control of mucus secretion by leeches: toward a general theory for serotonin. Am Zool 14:931–941

    Google Scholar 

  • Lent CM (1977) The Retzius cells within the CNS of leeches. Prog Neurobiol 8:81–117

    Google Scholar 

  • Lent CM (1981) Morphology of neurons containing monoamines within leech segmental ganglia. J Exp Zool 216:311–316

    Google Scholar 

  • Lent CM, Dickinson MH (1984) Serotonin integrates the feeding behavior of the medicinal leech. J Comp Physiol 154A:457–471

    Google Scholar 

  • Lutz EM, Tyrer NM, Altman JS, Turner J (1985) Some insect sensory neurons contain 5-hydroxytryptamine. Brain Res 325:353–356

    Google Scholar 

  • Macagno ER (1980) Number and distribution of neurons in leech segmental ganglia. J Comp Neurol 190:283–302

    Google Scholar 

  • Marsden CA, Kerkut GA (1969) Fluorescence miroscopy of the 5-HT and catecholamine-containing cells in the CNS of the leech Hirudo medicinalis. J Comp Biochem Physiol 31:851–862

    Google Scholar 

  • Mason A, Sunderland AJ, Leake LD (1979) Effects of leech Retzius cells on body wall muscles. Comp Biochem Physiol 63 C:359–361

    Google Scholar 

  • Mittenthal JE, Wine JJ (1978) Segmental homology and variation in flexor motoneurons of the crayfish abdomen. J Comp Neurol 177:311–334

    Google Scholar 

  • Myhrberg HE (1967) Monoaminergic mechanisms in the nervous system of Lumbricus terrestris (L.). Z Zellforsch 81:311–343

    Google Scholar 

  • Myhrberg HE (1971) Ultrastructural localization of monoamines in the epidermis of Lumbricus terrestris (L.). Z Zellforsch 117:139–154

    Google Scholar 

  • Myhrberg HE (1972) Ultrastructural localization of monoamines in the central nervous system of Lumbricus terrestris (L.) with remarks on neurosecretory vesicles. Z Zellforsch 126:348–362

    Google Scholar 

  • Nusbaum PM, Kristan JR (1986) Swim initiation in the leech by serotonin-containing interneurones, cells 21 and 61. J Exp Biol 122:277–302

    Google Scholar 

  • Ogawa F (1939) The nervous system of earthworm (Pheretima communissima) in different ages. Sci Rep Tohoku Univ Ser 4, 13:395–488

    Google Scholar 

  • Osborne NN (1971) Occurrence of GABA und taurine in the nervous system of dogfish and some invertebrates. Comp Gen Pharmacol 2:433–438

    Google Scholar 

  • Osborne NN (1972) Occurrence of glycine and glutamic acid in the nervous system of two fish species and some invertebrates. Comp Biochem Physiol 438:579–585

    Google Scholar 

  • Retzius G (1892) Das Nervensystem der Lumbricinen. Biol Untersuch 3:1–16

    Google Scholar 

  • Robertson HA (1975) Octopamine in the central nervous system of an annelid, Lumbricus terrestris L. Experientia 31:1006–1008

    Google Scholar 

  • Robertson HA, Osborne NN (1979) Putative neurotransmitters in the annelid central nervous system: presence of 5-hydroxyryptamine and octopamine-stimulated adenylate cyclases. Comp Biochem Physiol 64 C:7–14

    Google Scholar 

  • Romeis B (1968) Mikroskopische Technik. Oldenbourg, Munich Vienna

  • Rude S (1966) Monoamine-containing neurons in the nerve cord and body wall of Lumbricus terestris L. J Comp Neurol 128:397–412

    Google Scholar 

  • Rude S (1969a) Catecholamines in the ventral nerve cord of Lumbricus terrestris L. Comp Biochem Physiol 28:747–752

    Google Scholar 

  • Rude S (1969b) Monoamine-containing neurons in the central nervous system and peripheral nerves of the leech Hirudo medicinalis. J Comp Neurol 136:349–372

    Google Scholar 

  • Schwartz JH, Shkolnik LJ (1981) The giant serotonergic neuron of Aplysia: a multi-targeted nerve cell. J Neurosci 1:606–619

    Google Scholar 

  • Spörhase-Eichmann U, Gras H, Schürmann FW (1987) Patterns of serotonin-immunoreactive neurons in the central nervous system of the earthworm Lumbricus terrestris L. II Rostral and caudal ganglia. Cell Tissue Res 249:625–632

    Google Scholar 

  • Steinbusch HWM, Verhofstad AAJ, Joosten HWJ (1978) Localisation of serotonin in the central nervous system by immunohistohemistry: description of a specific and sensitive technique and some applications. Neuroscience 3:811–819

    Google Scholar 

  • Taghert PH, Goodmann CS (1984) Cell determination and differentiation of identified serotonin-immunoreactive neurons in the grasshopper embryo. J Neurosci 4:989–1000

    Google Scholar 

  • Taghert PH, Bastiani M, Ho RK, Goodmann CS (1982) Guidance of pioneer growth cones: filopodial contacts and coupling revealed with an antibody to Lucifer yellow. Dev Biol 94:391–399

    Google Scholar 

  • Tyrer MN, Turner JD, Altman JS (1984) Identifiable neurons in the locust central nervous system that react with antibodies to serotonin. J Comp Neurol 227:313–330

    Google Scholar 

  • Walker RJ (1982) Current trends in invertebrate neuropharmacology. Verh Dtsch Zool Ges, Fischer, Stuttgart, pp 31–52

    Google Scholar 

  • Welsh JH, Moorehead M (1960) The quantitative distribution of 5-HT in the invertebrates, especially in their nervous system. J Neurochem 6:146–169

    Google Scholar 

  • Willard AL (1981) Effects of serotonin on the generation of the motor program for swimming by the medicinal leech. J Neurosci 1:936–944

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spörhase-Eichmann, U., Gras, H. & Schürmann, FW. Patterns of serotonin-immunoreactive neurons in the central nervous system of the earthworm Lumbricus terrestris L.. Cell Tissue Res. 249, 601–614 (1987). https://doi.org/10.1007/BF00217332

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00217332

Key words

Navigation