Skip to main content
Log in

Morphology and physiology of peripheral giant interneurons in the forelegs (whips) of the whip spider Heterophrynus elaphus Pocock (Arachnida: Amblypygi)

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

The tarsi of the modified front legs (whips) of the whip spider Heterophrynus elaphus contain two afferent giant fibers, GN1 and GN2, with diameters at the tibia-tarsus joint of ca. 21 μm and 14 μm, respectively. The somata of these two neurons lie in the periphery, about 25 cm away from the CNS. These two neurons are interneurons which receive mechanoreceptive inputs from approximately 750 and 1500 bristles, respectively. The receptive fields of GN1 and GN2 overlap; they extend for 40 mm (GN1) and 90 mm (GN2) along the length of the tarsus. About 90% of the synapses onto the giant fibers are axo-axonic. Mechanical stimulation of a single bristle is sufficient to elicit action potentials in one or both interneurons. The response of the interneurons adapts quickly. Average conduction time from the soma to the CNS is 45 ms for GN1 and 55 ms for GN2. Mean conduction velocities are 5.5 and 4.2 m/s, respectively. Activity in the giant fibers does not elicit a motor response; hence the giant fibers do not mediate an escape response. Possible functions of these giant fibers are discussed and compared to those of giant fiber systems in other arthropods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GN :

giant neuron

S :

segment

References

  • Bacon JP, Murphey RK (1984) Receptive fields of cricket giant interneurones are related to their dendritic structure. J Physiol 352:601–623

    Google Scholar 

  • Beck L, Görke K (1974) Tagesperiodik, Revierverhalten und Beutefang der Geißelspinne Admetus pumilio C.L. Koch im Freiland. Z Tierpsychol 35:173–186

    Google Scholar 

  • Beck L, Foelix RF, Gödeke E, Kaiser R (1977) Morphologie, Larvalentwicklung und Haarsensillen des Tastbeinpaares der Geißelspinne Heterophrynus longicornis Butler (Arach., Amblypygi). Zoomorphologie 88:259–276

    Google Scholar 

  • Blagburn JM, Beadle DJ (1982) Morphology of identified cereal afforents and giant interneurones in the hatchling cockroach Periplaneta americana. J Exp Biol 97:421–426

    Google Scholar 

  • Calabrese RL, Kennedy D (1974) Multiple sites of spike initiation in a single dendritic system. Brain Res 82:316–321

    Google Scholar 

  • Callee JJ, Guillet JC, Pichon Y, Boistel J (1971) Further studies on synaptic transmission in insects. II. Relations between sensory information and its synaptic integration at the level of a single giant axon in the cockroach. J Exp Biol 55:123–149

    Google Scholar 

  • Farley RD, Milburn NS (1969) Structure and function of the giant fibre system in the cockroach Periplaneta americana. J Insect Physiol 15:457–476

    Google Scholar 

  • Foelix RF (1975) Occurrence of synapses in peripheral sensory nerves of arachnids. Nature 254:146–148

    Google Scholar 

  • Foelix RF (1976) Rezeptoren und periphere synaptische Verschaltungen bei verschiedenen Arachnida. Entomologia Germ 3:83–87

    Google Scholar 

  • Foelix RF (1985) Sensory nerves and peripheral synapses. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 189–200

    Google Scholar 

  • Foelix RF, Troyer D (1980) Giant neurons and associated synapses in the peripheral nervous system of whip spiders. J Neurocytol 9:517–535

    Google Scholar 

  • Foelix RF, Chu-Wang I-W, Beck L (1975) Fine structure of tarsal sensory organs in the whip spider Admetus pumilio (Amblypygi, Arachnida). Tissue Cell 7:331–346

    Google Scholar 

  • Hayes WF, Barber SB (1982) Peripheral synapses in Limulus chemoreceptors. Comp Biochem Physiol 72A:287–293

    Google Scholar 

  • Hughes GM, Wiersma CAG (1960) Neuronal pathways and synaptic connexions in the abdominal cord of the crayfish. J Exp Biol 37:291–307

    Google Scholar 

  • Igelmund P (1984) Elektrophysiologische und morphologische Untersuchungen zur Funktion peripherer Riesenneurone in den Tastbeinen der Geißelspinne Heterophrynus elaphus Pocock. Dissertation, Universität zu Köln

  • Igelmund P (1987) Morphology, sense organs, and regeneration of the forelegs (whips) of the whip spider Heterophrynus elaphus (Arachnida, Amblypygi). J Morphol 193:75–89

    Google Scholar 

  • Igelmund P (1988) Bristles change their structure during larval development in the whip spider Heterophrynus elaphus: specialization for transduction of wind stimuli? In: Eisner N, Barth FG (eds): Sense organs, interfaces between environment and behaviour. Proc 16th Göttingen Neurobiology Conference. Thieme, Stuttgart New York, p. 338

    Google Scholar 

  • Igelmund P, Wendler G (1991) The giant fibre system in the forelegs (whips) of the whip spider Heterophrynus elaphus Pocock (Arachnida: Amblypygi). J Comp Physiol A 168:63–73

    Google Scholar 

  • King DG (1977) An interneuron in Drosophila synapses within a peripheral nerve onto the dorsal longitudinal muscle motor neurons. Neurosci Abstr 3:180

    Google Scholar 

  • King DG, Wyman RJ (1980) Anatomy of the giant fibre pathway in Drosophila. I. Three thoracic components of the pathway. J Neurocytol 9:753–770

    Google Scholar 

  • Krämer K, Markl H (1978) Flight-inhibition on ground contact in the American cockroach, Periplaneta americana. I. Contact receptors and a model for their central connections. J Insect Physiol 24:577–586

    Google Scholar 

  • Levine J, Tracey D (1973) Structure and function of the giant motorneuron of Drosophila melanogaster. J Comp Physiol 87:213–235

    Google Scholar 

  • Matsumoto SG, Murphey RK (1977) The cercus-to-giant interneuron system of crickets. IV. Patterns of connectivity between receptors and the medial giant interneuron. J Comp Physiol 119:319–330

    Google Scholar 

  • Milburn NS, Bentley DR (1971) On the dendritic topology and activation of cockroach giant interneurons. J Insect Physiol 17:607–623

    Google Scholar 

  • Murphey RK (1983) Maps in the insect nervous system, their implications for synaptic connectivity and target location in the real world. In: Huber F, Markl H (eds): Neuroethology and behavioral physiology. Springer, Berlin Heidelberg New York, pp 176–188

    Google Scholar 

  • Murphey RK (1985) A second cricket cereal sensory system: bristle hairs and the interneurons they activate. J Comp Physiol A 156:357–367

    Google Scholar 

  • Murphey RK, Palka J, Hustert R (1977) The cercus-to-giant interneuron system of crickets. II. Response characteristics of two giant interneurons. J Comp Physiol 119:285–300

    Google Scholar 

  • Murphey RK, Jacklet A, Schuster L (1980) A topographic map of sensory cell terminal arborizations in the cricket CNS: Correlation with birthday and position in a sensory array. J Comp Neurol 191:53–64

    Google Scholar 

  • Palka J, Olberg R (1977) The cercus-to-giant interneuron system of crickets. III. Receptive field organization. J Comp Physiol 119:301–317

    Google Scholar 

  • Ritzmann RE, Camhi JM (1978) Excitation of leg motor neurons by giant interneurons in the cockroach, Periplaneta americana. J Comp Physiol 125:305–316

    Google Scholar 

  • Runhaar G (1982) Neuroanatomie und Neurophysiologie des Abdomen der Stabheuschrecke (Carausius morosus Br.). Dissertation, Universität zu Köln

  • Sigvardt KA, Hagiwara G, Wine JJ (1982) Mechanosensory integration in the crayfish abdominal nervous system: Structural and physiological differences between interneurons with single and multiple spike initiating sites. J Comp Physiol 148:143–157

    Google Scholar 

  • Umbach JA, Lang F (1981) Synaptic interaction between the giant interneuron and the giant motorneuron in the hermit crab, Paguruspollicarus. Comp Biochem Physiol 68A:49–53

    Google Scholar 

  • Valentino KL (1977) Identified neurons make identical synapses in Musca and Drosophila. Neurosci Abstr 3:190

    Google Scholar 

  • Weygoldt P (1972a) Admetus pumilio (Tarantulidae), Kampfverhalten. Encycl Cinem Göttingen (E 1859)

  • Weygoldt P (1972b) Admetus pumilio (Tarantulidae), Paarungsverhalten. Encycl Cinem Göttingen (E 1860)

  • Weygoldt P (1977) Kampf, Paarungsverhalten, Spermatophoren-morphologie und weibliche Genitalien bei neotropischen Geißelspinnen (Amblypygi, Arachnida). Zoomorphologie 86:271–286

    Google Scholar 

  • Zucker RS (1972a) Crayfish escape behavior and central synapses. I. Neural circuit exciting lateral giant fiber. J Neurophysiol 35:599–620

    Google Scholar 

  • Zucker RS (1972b) Crayfish escape behavior and central synapses. II. Electrical junctions and dendrite spikes in fast flexor motoneurons. J Neurophysiol 35:638–651

    Google Scholar 

  • Zucker RS, Kennedy D, Selverston AI (1971) Neuronal circuit mediating escape response in crayfish. Science 173:645–650

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Igelmund, P., Wendler, G. Morphology and physiology of peripheral giant interneurons in the forelegs (whips) of the whip spider Heterophrynus elaphus Pocock (Arachnida: Amblypygi). J Comp Physiol A 168, 75–83 (1991). https://doi.org/10.1007/BF00217105

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00217105

Key words

Navigation