Skip to main content
Log in

The presence of two populations of sensory-type cells in the pineal organ of the five-bearded rockling, Ciliata mustela L. (Teleostei)

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The pineal organ of the five-bearded rockling, Ciliata mustela L., was examined by means of electron microscopy. Two categories of sensory cells are described: 1) Sensory cells 1 (or photoreceptor cells (sensu stricto) showing the characteristic ultrastructure of photoreceptor cells with a well-developed receptor pole (outer segment) and a transmitter pole (ribbon-type synapse in the basal pedicle contacting dendritic processes), and a segmental organization of organelles. 2) Sensory cells 2 (or photoneuroendocrine cells) displaying no particular segmentation. The ultrastructure of the receptor pole (outer segment) is variable in shape (with either long or short disks) and in the number of disks; some outer segments are simple cilia of the 9+0 type. This second cell category is rich in smooth endoplasmic reticulum, β-particles of glycogen, dense inclusions of variable size and content, and dense-core vesicles 130 nm in diameter. These cells have an extended contact area with the perivascular space. The functional significance of both cell categories is discussed in terms of the known physiological responses of the pineal organ. A possible confusion in identification of interstitial cells and neuroendocrine cells in some teleost species is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bassot JM, Nicolas MT (1978) Similar paracrystals of endoplasmic reticulum in the photoemitters and the photoreceptors of scale-worms. Experientia 34:726–728

    Google Scholar 

  • Chèze G, Pradal G, Tusques J (1973) Mise en évidence d'une sécrétion d'origine golgienne dans les cellules interstitielles épiphysaires de Symphodus melops. CR Acad Sc Paris, D 277:2517–2519

    Google Scholar 

  • Cohen AI (1973) An ultrastructural analysis of the photoreceptors of the squid and their synaptic connections. I. Photoreceptive and non-synaptic regions of the retina. J Comp Neurol 147:351–378

    Google Scholar 

  • Collin JP (1969) Contribution à l'étude de l'organe pinéal. De l'épiphyse sensorielle à la glande pinéale: modalités de transformation et implications fonctionelles. Ann Stn Biol, BesseenChandesse Fr., Suppl n∘ 1, 1–359

  • Collin JP (1971) Differentiation and regression of the cells of the sensory line in the epiphysis cerebri. In: Wolstenholme GEW, Knight J (eds) The pineal gland. Churchill, London, pp 79–125

    Google Scholar 

  • Dodt E (1963) Photosensitivity of the pineal organ in the teleost, Salmo irideus (Gibbons) Experientia 19:642–643

    Google Scholar 

  • Dodt E (1973) The parietal eye (pineal and parietal organs) of lower vertebrates. Handb Sensory Physiol VII, 3B:113–140

    Google Scholar 

  • Eakin RM (1968) Evolution of photoreceptors. In: Dobzhansky Th, Hecht MK, Steere WmC (eds) Evolutionary biology, vol 2. Appleton — Century — Crofts, New York, pp 194–242

    Google Scholar 

  • Eakin RM, Brandenburger JL (1975) Retinal differences between light-tolerant and light-avoiding slugs (Mollusca: Pulmonata). J Ultrastruct Res 53:382–394

    Google Scholar 

  • Eakin RM, Brandenburger JL, Barker GM (1980) Fine structure of the eye of the New Zealand slug Athoracophorus bitentaculatus. Zoomorphologie 94:225–239

    Google Scholar 

  • Falcon J (1978) Pluralité et sites d'élaboration des messages de l'organe pinéal. Etude chez un Vertébré inférieur: le brochet (Esox lucius, L.). Thèse de 3ème cycle, Université de Poitiers, France

    Google Scholar 

  • Falcon J (1979) L'organe pinéal du Brochet (Esox lucius, L.). I Etude anatomique et cytologique. Ann Biol Anim Biochim Biophys 19(2-A):445–465

    Google Scholar 

  • Falcon J, Meissl H (1981) The photosensory function of the pineal organ of the pike (Esox lucius L.) Correlation between structure and function. J Comp Physiol A 144:127–137

    Google Scholar 

  • Falcon J, Juillard MT, Collin JP (1980a) L'organe pinéal du Brochet (Esox lucius, L.). IV. Sérotonine endogène et activité monoamine oxydasique; étude histochimique, ultracytochimique et pharmacologique. Reprod Nutr Dévelop 20(1A):139–154

    Google Scholar 

  • Falcon J, Juillard MT, Collin JP (1980b) L'organe pinéal du Brochet (Esox lucius, L.). V. Etude radioautographique de l'incorporation in vivo et in vitro de précurseurs indoliques. Reprod Nutr Dévelop 20(4A):991–1010

    Google Scholar 

  • Falcon J, Geffard M, Juillard M-Th, Delaage M, Collin JP (1981) Melatonin-like immunoreactivity in photoreceptor cells. A study in the teleost pineal organ and the concept of photoneuroendocrine cells. Biol Cell 42:65–68

    Google Scholar 

  • Flight WFG (1975) On the pineal of the urodele, Diemictylus viridescens viridescens. Thesis, University of Utrecht, Netherlands

    Google Scholar 

  • Hafeez MA, Quay WB (1969) Histochemical and experimental studies of 5-hydroxytryptamine in pineal organs of teleosts (Salmo gairdneri and Atherinopsis californiensis). Gen Comp Endocrinol 13:211–217

    Google Scholar 

  • Hafeez MA, Quay WB (1970) Pineal acetylserotonin methyltransferase activity in the teleost fishes, Hesperoleucus symmetricus and Salmo gairdneri, with evidence for lack of effect of constant light and darkness. Comp Gen Pharmac 1:257–262

    Google Scholar 

  • Hafeez MA, Zerihun L (1976) Autoradiographic localization of 3H-5-HTP and 3H-5-HT in the pineal organ and circumventricular areas in the rainbow trout, Salmo gairdneri Richardson. Cell Tissue Res 170:61–76

    Google Scholar 

  • Hanyu I, Niwa H (1970) Pineal photosensitivity in three teleosts, Salmo irideus, Plecoglossus altivelis and Mugil cephalus. Rev Canad Biol 29:133–140

    Google Scholar 

  • Hartwig HG, Baumann Ch (1974) Evidence for photosensitive pigments in the pineal complex of the frog. Vision Res 14:597–598

    Google Scholar 

  • Hartwig HG, Oksche A (1981) Photoneuroendocrine cells and systems: a concept revisited. In: Oksche A, Pévet P (eds) The pineal organ: Photobiology-biochronometry-endocrinology. Developments in Endocrinology. Elsevier, North-Holland. 14:49–59

    Google Scholar 

  • Herwig HJ (1976) Comparative ultrastructural investigations of the pineal organ of the blind cave fish, Anoptichthys jordani, and its ancestor, the eyed river fish, Astyanax mexicanus. Cell Tissue Res 167:297–324

    Google Scholar 

  • Herwig HJ (1980) Comparative ultrastructural observations on the pineal organ of the pipefish, Syngnatus acus, and the seahorse, Hippocampus hudsonius. Cell Tissue Res 209:187–200

    Google Scholar 

  • Herwig HJ (1981) The pineal organ. An ultrastructural and biochemical study on the pineal organ of Hemigrammus caudovittatus and other closely related characid fish species with special reference to the Mexican blind cave fish, Astyanax mexicanus. Thesis, University of Utrecht (Netherlands)

    Google Scholar 

  • Kappers J Ariëns (1965) Survey of the innervation of the epiphysis cerebri and the accessory pineal organs of vertebrates. In: Kappers JA, Schadé JP (eds) Structure and function of the epiphysis cerebri. Prog Brain Res 10:87–153

  • Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409–414

    Article  CAS  PubMed  Google Scholar 

  • McNulty JA (1978a) Fine structure of the pineal organ in the troglobytic fish, Typhlichthyes subterraneous (Pisces: Amblyopsidae) Cell Tissue Res 195:535–545

    Google Scholar 

  • McNulty JA (1978b) The pineal of the troglophilic fish, Chologaster agassizi: an ultrastructural study. Neural Trans 43:47–71

    Google Scholar 

  • McNulty JA (1978c) A light and electron microscopic study of the pineal in the blind Goby, Typhlogobius californiensis (Pisces: Gobiidae). J Comp Neurol 181:197–212

    Google Scholar 

  • McNulty JA (1981) A quantitative morphological study of the pineal organ in the goldfish, Carassius auratus. Can J Zool 59:1312–1325

    Google Scholar 

  • McNulty JA, Nafpaktitis (1977) Morphology of the pineal complex in seven species of lanternfishes (Pisces: Myctophidae). Am J Anat 150:509–530

    Google Scholar 

  • Meiniel A (1980) Ultrastructure of serotonin-containing cells in the pineal organ of Lampetra planeri (Petromyzontidae) Cell Tissue Res 207:407–427

    Google Scholar 

  • Meiniel A (1981) New aspects of the phylogenetic evolution of sensory cell lines in the vertebrate pineal complex. In: Oksche A, Pévet P (eds) The pineal organ: Photobiology-biochronometry-endocrinology. Developments in Endocrinology 14:27-47. Elsevier, North-Holland

  • Meiniel A, Hartwig HG (1980) Indoleamines in the pineal complex of Lampetra planeri (Petromyzontidae). A fluorescence microscopic and microspectrofluorimetric study. J Neural Trans 48:65–83

    Google Scholar 

  • Morita Y (1966) Entladungsmuster pinealer Neurone der Regenbogenforelle (Salmo irideus) bei Belichtung des Zwischenhirns. Pflügers Arch 289:155–167

    Google Scholar 

  • Oguri M, Omura Y, Hibiya T (1968) Uptake of 14C-labelled 5-hydroxytryptophan into the pineal organ of rainbow trout. Bull Jpn Soc Sci Fish 34:687–690

    Google Scholar 

  • Oksche A (1971) Sensory and glandular elements of the pineal organ. In: Wolstenholme GEW, Knight J (eds) The pineal gland. Churchill, London, pp 127–146

    Google Scholar 

  • Oksche A, Hartwig HG (1979) Pineal sense organs components of photoneuroendocrine systems. In: Kappers J Ariëns, Pévet P (eds) The pineal gland of vertebrates including man. Prog Brain Res 52:113–130

  • Omura Y (1975) Influence of light and darkness on the ultrastructure of the pineal organ in the blind cave fish, Astyanax mexicanus. Cell Tissue Res 160:99–112

    Google Scholar 

  • Owman CH, Rüdeberg C (1970) Light, fluorescence, and electron microscopic studies on the pineal organ of the pike, Esox lucius L., with special regard to 5-hydroxytryptamine. Z Zellforsch 107:522–550

    Google Scholar 

  • Pavans de Ceccatty M, Bassot JM, Bilbaut A, Nicolas MT (1977) Bioluminescence des élytres d'Acholoe I. Morphologie des supports structuraux. Biol Cellulaire 28:57–64

    Google Scholar 

  • Pévet P (1977) On the presence of different populations of pinealocytes in the mammalian pineal gland. J Neural Trans 40:289–304

    Google Scholar 

  • Pévet P, Kappers J Ariëns, Voûte AM (1977) Morphologic evidence for differentiation of pinealocytes from photoreceptor cells in the adult noctule bat (Nyctalus noctula, Schreber). Cell Tissue Res 182:99–109

    Google Scholar 

  • Quay WB (1965) Retinal and pineal hydroxyindole-O-methyl transferase activity in vertebrates. Life Sci 4:983–991

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  CAS  PubMed  Google Scholar 

  • Rüdeberg C (1969) Light and electron microscopic studies on the pineal organ of the dogfish, Scyliorhinus canicula L. Z Zellforsch 96:548–581

    Google Scholar 

  • Scharrer E (1964) Photo-neuro-endocrine systems: general concept. Ann New York Acad Sci 117:13–22

    Google Scholar 

  • Ueck M (1972) Sensorische und sekretorische Strukturelemente des Pinealorgans und ihre funktionelle Bedeutung. Habilitationsschrift, Bereich Humanmedizin der Justus-Liebig-Universität Giessen

  • Ueck M (1979) Innervation of the vertebrate pineal. In: Kappers J Ariëns, Pévet P (eds) The pineal gland of vertebrates including man. Prog Brain Res 52:45–88

  • Veen Th van, Ekström, Borg B, Møller M (1980) The pineal complex of the three-spined stickleback, Gasterosteus aculeatus L. Cell Tissue Res 209:11–28

    Google Scholar 

  • Vigh B, Vigh-Teichman I (1981) Light and electron microscopic demonstration of immunoreactive opsin in the pinealocytes of various vertebrates. Cell Tissue Res 221:451–464

    Google Scholar 

  • Vivien-Roels B (1969) Etude structurale et ultrastructurale de l'épiphyse d'un Reptile: Pseudemys scripta elegans. Z Zellforsch 94:352–390

    Google Scholar 

  • Vivien-Roels B, Meiniel A (1981) Preliminary ultrastructural and autoradiographic observations on the pineal organ of the rockling (Teleostei). XIth Conference of the European Society for Comparative Endocrinology, Jerusalem August 10–14, 1981

  • Vivien-Roels B, Pévet P, Dubois MP, Arendt J, Brown GM (1981) Immunohistochemical evidence for the presence of melatonin in the pineal gland, the retina and the Harderian gland. Cell Tissue Res 217:105–115

    Google Scholar 

  • Vlaming V de, Olcese J (1981) The pineal and reproduction in fish, amphibians, and reptiles. In: Reiter RJ (ed) The pineal gland vol II Reproductive effects. CRC Press, pp 2–29

  • Vollrath L (1981) The pineal organ. In: Oksche A, Vollrath L (eds) Handb mikrosk Anat Mensch 6/7 Springer, Berlin Heidelberg New York

    Google Scholar 

  • Whittle AC (1976) Reticular specializations in photoreceptors. A review. Zool Scripta 5:191–206

    Google Scholar 

  • Whittle AC, Golding DW (1974) The fine structure of prostomial photoreceptors in Eulalia viridis (Polychaeta; Annelida). Cell Tissue Res 154:379–398

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meiniel, A., Vivien-Roels, B. The presence of two populations of sensory-type cells in the pineal organ of the five-bearded rockling, Ciliata mustela L. (Teleostei). Cell Tissue Res. 230, 553–571 (1983). https://doi.org/10.1007/BF00216201

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00216201

Key words

Navigation