Skip to main content
Log in

Glucose regulation of specific gene expression is altered in a glucokinase-deficient mutant of Tetrahymena

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Expression of the galactokinase gene in Tetrahymena thermophila can be repressed by glucose, glucose analogs, and epinephrine, each apparently acting through increased intracellular levels of adenosine 3′:5′-cyc lic monophosphate (cAMP) (1). To characterize further the initial steps in the control of galactokinase gene-expression by glucose, we have analyzed mutants which are defective in the metabolism of this sugar; these mutants were selected for their resistance to the glucose analog, 2-deoxyglucose (2). In one such mutant that is deficient in glucokinase, the synthesis of galactokinase is totally resistant to repression by glucose or its analogs, while repression by exogenous catecholamines or dibutyryl cAMP is unaffected. Radiochromatographic analyses of extracts of wild-type cells incubated with [14C]-deoxyglucose reveal intracellular conversio to several deoxyglucose metabolites, principally deoxyglucose-6-P and smaller amounts of deoxyglunose 1-P and 2-deoxygluconate; extracts of glucokinase-deficient cells prepared in a similar manner contain only trace amounts of deoxyglucose-6-P. The glucose analog 3-O-methylglucose, which is transported but not phosphorylated in wild-type cells, also cannot maintain repression of galactokinase. These results establish that the transport and subsequent phosphorylation of glucose are required for glucose-initiated repression of galactokinase gene expression, possibly acting by modulation of catecholamine or cyclic AMP levels.

Additionally, we show unequivocally that: (a) cells containing derepressed levels of galactokinase are repressed upon the addition of glucose by inhibition of the synthesis of new enzyme and dilution of preformed enzyme concomitant with cell division, rather than through selective inactivation or degradation of galactokinase; and (b) glycerol kinase, glucokinase and fructokinase activities also are repressed by glucose in wild-type Tetrahymena, indicating that the glucose repression phenomenon is pleiotropic. Because the glucose repression of the synthesis of each of these enzymes is abolished in cells deficient in glucokinase, the regulatory mechanisms elucidated for repression of galactokinase synthesis are likely to be of wide significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roberts, C. T., Jr. & Morse, D. E., 1978. Proc. Natl. Acad. Sci. 75: 1810–1814.

    Article  PubMed  CAS  Google Scholar 

  2. Roberts, C. T., Jr., Lavine, J. E. & Morse, D. E., 1982. Molec. Cell. Biol. 2: 378–385.

    PubMed  CAS  Google Scholar 

  3. Miller, Z., Varmus, H. E., Parks, J. S., Perlman, R. L. & Pastan, I., 1971. J. Biol. Chem. 246: 2898–2903.

    PubMed  CAS  Google Scholar 

  4. Douglas, H. C. & Hawthorne, D. C., 1966. Genetics 54: 911–916.

    PubMed  CAS  Google Scholar 

  5. Tao, M. & Schweiger, M., 1970. J. Bacteriol. 102: 138–141.

    PubMed  CAS  Google Scholar 

  6. Magasanik, B., 1961. Cold Spring Harbor Symp. Quant. Biol. 26: 249–256.

    PubMed  CAS  Google Scholar 

  7. Pastan, I. & Adhya, S., 1976. Bact. Rev. 40: 527–551.

    PubMed  CAS  Google Scholar 

  8. Sy, J. & Richter, D., 1972. Biochemistry 11, 2788–2791.

    Article  PubMed  CAS  Google Scholar 

  9. Van Wijk, R. & Konijn, T. M., 1971. FEBS Lett. 13: 184.

    Article  PubMed  Google Scholar 

  10. Schlander, G. & Dellweg, H., 1974. Eur. J. Biochem. 49: 305–316.

    Article  Google Scholar 

  11. Nandini-Kishore, S. G. & Thompson, G. A. Jr., 1979. Proc. Natl. Acad. Sci. 76: 2708–2711.

    Article  PubMed  CAS  Google Scholar 

  12. Ramanathan, S. & Chou, S. C., 1973. Experientia 29: 814.

    Article  PubMed  CAS  Google Scholar 

  13. Janakidevi, K., Dewey, V. C. & Kidder, G. W., 1966. J. Biol. Chem. 241: 2576–2578.

    PubMed  CAS  Google Scholar 

  14. Rozensweig, Z. & Kindler, S. H., 1972. FEBS Lett. 25: 221–223.

    Article  PubMed  CAS  Google Scholar 

  15. Kassis, S. & Kindler, S., 1975. Biochim. Biophys. Acta 391: 513–516.

    PubMed  CAS  Google Scholar 

  16. Holzer, H., 1976. Trends Biochem. Sci. 1: 178–181.

    CAS  Google Scholar 

  17. Matern, H. & Holzer, H., 1977. J. Biol. Chem. 252: 6399–6402.

    PubMed  CAS  Google Scholar 

  18. Entian, K. D., 1977. Mol. Gen. Genet. 158: 201–210.

    Article  CAS  Google Scholar 

  19. Nanney, D. L. & McCoy, J. W., 1976. Trans. Amer. Micro. Sec. 95: 664–682.

    Article  CAS  Google Scholar 

  20. Roberts, C. T., Jr. & Morse, D. E., 1980. Mol. Gen. Genet. 180:129–134.

    Article  PubMed  Google Scholar 

  21. Thorner, J. W., 1975. In: Methods in Enzymology (Wood, W.A., ed.) Vol. 42, pp. 148–156, Academic Press, New York.

  22. Bradford, M., 1976. Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  23. Dryl, S., 1959. J. Protozool. 6 (Suppl.), 25.

    Google Scholar 

  24. Hanes, C. S. & Isherwood, F. A., 1949. Nature 164: 1107–1109.

    PubMed  CAS  Google Scholar 

  25. Fischer, W. & Weidemann, G., 1964. Hoppe-Seyler's Z. Physiol. Chem. 336: 206–218.

    CAS  Google Scholar 

  26. Aomine, M., 1976. Comp. Biochem. Physiol. 55A: 159–163.

    Article  Google Scholar 

  27. Lavine, J. E., Cantlay, E., Roberts, C. T., Jr. & Morse, D. E., 1982. Biochim. Biophys. Acta. (In press.)

  28. Smith, D. F. & Keppler, D. O. R., 1977. Eur. J. Biochem. 73: 83–92.

    Article  PubMed  CAS  Google Scholar 

  29. Schmidt, M. F. G., Schwarz, R. T. & Scholtissek, C., 1974. Eur. J. Biochem. 49: 237–247.

    Article  PubMed  CAS  Google Scholar 

  30. Kipnis, D. M. & Cori, C. F., 1959. J. Biol. Chem. 234: 171–177.

    PubMed  CAS  Google Scholar 

  31. Brooks, S. A., Lawrence, J. C. & Ricketts, C.R., 1960. Nature 187: 1028–1029.

    Article  CAS  Google Scholar 

  32. Plagemann, P. G. W., 1973. J. Cell Physiol. 82: 421–433.

    Article  PubMed  CAS  Google Scholar 

  33. Hatanaka, M. & Hanafusa, H., 1970. Virology 41: 647–652.

    Article  PubMed  CAS  Google Scholar 

  34. Biely, P. & Bauer, S., 1968. Biochim. Biophys. Acta 156: 432–434.

    PubMed  CAS  Google Scholar 

  35. Kaluza, G., Schmidt, M. F. G. & Scholtissek, C., 1973. Virology 54: 179–189.

    Article  PubMed  CAS  Google Scholar 

  36. Peterkofsky, A. & Gazdar, C., 1975. Proc. Natl. Acad. Sci. 72:2920–2924.

    Article  PubMed  CAS  Google Scholar 

  37. Makman, R. S. & Sutherland, E. Q., 1965. J. Biol. Chem. 240:1309–1314.

    PubMed  CAS  Google Scholar 

  38. Kundig, W., Ghosh, S. & Roseman, S., 1964. Proc. Natl. Acad. Sci. 52: 1067–1074.

    Article  PubMed  CAS  Google Scholar 

  39. Sanford, Y. M. & Orias, E., 1981. Proc. Natl. Acad. Sci. 78: 7614–7619.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavine, J.E., Roberts, C.T. & Morse, D.E. Glucose regulation of specific gene expression is altered in a glucokinase-deficient mutant of Tetrahymena . Mol Cell Biochem 48, 45–58 (1991). https://doi.org/10.1007/BF00214821

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00214821

Keywords

Navigation