Skip to main content
Log in

Freeze-fracture study of the turtle lung

2. Rod-shaped particles in the plasma membrane of a mitochondria-rich pneumocyte in Pseudemys (Chrysemys) scripta

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

In thin sections of the lung of the fresh-water turtle Pseudemys (Chrysemys) scripta some pneumocytes can be distinguished from the remaining pulmonary epithelial cells by a larger amount of mitochondria. In these cells the typical features of type-I and type-II cells are absent. Freeze-fracture replicas reveal rod-shaped particles in the apical plasma membrane of a small population of pneumocytes, which by cytological criteria seem to be identical with the mitochondria-rich cells observed in thin sections. It is assumed that these cells represent a distinct type of pneumocytes in the turtle lung and that they are a member of the group of mitochondria-rich cells present in some ion-transporting epithelia. The function of these cells in this location remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bargmann W, Welsch U (1972) Über Kanälchenzellen und dunkle Zellen im Nephron von Anuren. Z Zellforsch 134:193–204

    Google Scholar 

  • Bargmann W, Knoop A, Schiebler TH (1955) Histologische cytochemische und elektronenmikroskopische Untersuchungen am Nephron (mit Berücksichtigung der Mitochondrien). Z Zellforsch 42:386–422

    Google Scholar 

  • Brown D (1978) Freeze-fracture of Xenopus laevis kidney: rodshaped particles in the canalicular membrane of the collecting tubule flask cell. J Ultrastruct Res 63:35–40

    Google Scholar 

  • Brown D, Montesano R (1980) Membrane specialization in the rat epididymis. I. Rod-shaped intramembrane particles in the apical (mitochondria-rich) cell. J Cell Sci 45:187–198

    Google Scholar 

  • Brown D, Ilic V, Orci L (1978) Rod-shaped particles in the plasma membrane of the mitochondria-rich cell of amphibian epidermis. Anat Rec 192:269–276

    Google Scholar 

  • Brown D, Grosso A, De Sousa RC (1981) The amphibian epidermis: distribution of mitochondria-rich cells and the effect of oxytocin. J Cell Sci 52:197–213

    Google Scholar 

  • Brown D, Roth J, Kumpulainen T, Orci L (1982) Ultrastructural immunocytochemical localization of carbonic anhydrase. Histochemistry 75:209–213

    Google Scholar 

  • Cohen JP, Hoffer AP, Rosen S (1976) Carbonic anhydrase localization in the epididymis and testis of the rat: histochemical and biochemical analysis. Biol Reprod 14:339–346

    Google Scholar 

  • Eldrup E, Møllgard K, Bindslev N (1979) Possible sodium channels in the luminal membrane of the hen lower intestine visualized by freeze fracture. In: Bourguet J, Chevalier J, Parisi M, Ripoche P (eds) Controle hormonal des transports epitheliaux. INSERM, Paris, vol. 85, p 253–262

    Google Scholar 

  • Eldrup E, Møllgard K, Bindslev N (1980) Possible epithelial sodium channels visualized by freeze-fracture. Biochim Biophys Acta 596:152–157

    Google Scholar 

  • Fain W, Rosen S (1973) Carbonic anhydrase activity in amphibian and reptilian lung: a histochemical and biochemical analysis. Histochem J 5:519–528

    Google Scholar 

  • Farquhar MF, Palade GE (1965) Cell junctions in amphibian skin. J Cell Biol 26:269–291

    Google Scholar 

  • Frazier LW (1978) Cellular changes in the toad urinary bladder in response to metabolic acidosis. J Membr Biol 40:165–177

    Google Scholar 

  • Hörandner H, Kerjaschki D, Stockinger L (1974) Rodshaped particles in epithelial free surface membranes. Eighth International Congress on Electron Microscopy, Canberra, vol. II, pp 210–211

  • Humbert F, Pricam C, Perrelet A, Orci L (1975) Specific plasma membrane differentiations in the cells of the kidney collecting tubule. J Ultrastruct Res 52:13–20

    Google Scholar 

  • Husted RF, Mueller AL, Kessel RG, Steinmetz PR (1981) Surface characteristics of carbonic-anhydrase-rich cells in turtle urinary bladder. Kidney Int 19:491–502

    Google Scholar 

  • Jonas L (1981) Histochemischer Nachweis von Carboanhydrase in den Flaschenzellen der Nieren vom Krallenfrosch (Xenopus laevis Daudin). Acta Histochem 68:238–247

    Google Scholar 

  • Kerjaschki D, Hörandner H (1976) The development of mouse olfactory vesicles and their cell contacts: a freeze-etching study. J Ultrastruct Res 54:420–444

    Google Scholar 

  • Lönnerholm G (1980) Carbonic anhydrase in the lung. Acta Physiol Scand 108:197–199

    Google Scholar 

  • Lönnerholm G (1982) Pulmonary carbonic anhydrase in the human, monkey, and rat. J Appl Physiol 52:352–356

    Google Scholar 

  • Menco BPM (1980) Qualitative and quantitative freeze-fracture studies on olfactory and nasal respiratory epithelial surfaces of frog, ox, rat, and dog. II. Cell apices, cilia, and microvilli. Cell Tissue Res 211:5–29

    Google Scholar 

  • Miragall F, Breipohl W, Mendoza AS (1981) Morphological investigations on the rat vomeronasal organ. Verh Anat Ges 75:967–968

    Google Scholar 

  • Miragall F, Breipohl W, Naguro T, Voss-Wermbter G (1984) Freeze-fracture study of the plasma membranes of the septal olfactory organ of Masera J Neurocytol, in press

  • Nielson DW, Goerke J, Clements JA (1981) Alveolar subphase pH in the lungs of anesthetized rabbits. Proc Natl Acad Sci USA 78:7119–7123

    Google Scholar 

  • Orci L, Humbert F, Amherdt M, Grosso A, De Sousa RC, Perrelet A (1975) Patterns of membrane organization in toad bladder epithelium: a freeze-fracture study. Experientia 31:1335–1338

    Google Scholar 

  • Rhodin J (1958) Anatomy of kidney tubules. Int Rev Cytol 7:485–534

    Google Scholar 

  • Rosen S, Friedley NJ (1973) Carbonic anhydrase activity in Rana pipiens skin: biochemical and histochemical analysis. Histochemistry 36:1–4

    Google Scholar 

  • Rosen S, Oliver JA, Steinmetz PR (1974) Urinary acidification and carbonic anhydrase distribution in bladders of Dominican and Colombian toads. J Membr Biol 15:193–205

    Google Scholar 

  • Sapirstein VS, Scott WN (1975) Binding of aldosterone by mitochondria-rich cells of the toad urinary bladder. Nature 257:241–243

    Google Scholar 

  • Stetson DL, Wade JB, Giebisch G (1980) Morphologic alterations in the rat medullary collecting duct following potassium depletion. Kidney Int 17:45–46

    Google Scholar 

  • Sugai N, Ito S (1980) Carbonic anhydrase, ultrastructural localization in the mouse gastric mucosa and improvements in the technique. J Histochem Cytochem 28:511–525

    Google Scholar 

  • Sugai N, Ninomiya Y, Oosaki T (1981) Localization of carbonic anhydrase in the rat lung. Histochemistry 72:415–424

    Google Scholar 

  • Voute CL, Meier W (1978) The mitochondria-rich cell of frog skin as hormone-sensitive “shunt-path”. J Membr Biol 40:151–165

    Google Scholar 

  • Voute CL, Hänni S, Ammann E (1972) Aldosterone induced morphological changes in amphibian epithelia in vivo. J Steroid Biochem 3:161–165

    Google Scholar 

  • Wade JB (1976) Membrane structural specialization of the toad urinary bladder revealed by the freeze-fracture technique. II. The mitochondria-rich cell. J Membr Biol 29:111–126

    Google Scholar 

  • Welsch U, Müller W (1980) Feinstrukturelle Beobachtungen am Alveolarepithel von Reptilien unterschiedlicher Lebensweise. Z mikrosk-anat Forsch, Leipzig 94:479–503

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartels, H., Welsch, U. Freeze-fracture study of the turtle lung. Cell Tissue Res. 236, 453–457 (1984). https://doi.org/10.1007/BF00214249

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00214249

Key words

Navigation