Skip to main content
Log in

A Golgi-type study of the hypothalamus of the lizard, Calotes versicolor

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The hypothalamus of the garden lizard, Calotes versicolor, was investigated with the use of the rapid Golgi and Golgi-Cox techniques. Individual neurons belonging to different nuclear groups were identified and studied with respect to their position, orientation, nature, pattern of arborization and connections. Magnocellular neurons in the preoptic region (rapid Golgi method) are large, lobular, bipolar or multipolar elements characterized by smooth contours of their somata, and processes of differing caliber and pattern of branching. Parvocellular neurons were found to belong to the primitive and generalized isodendritic type displaying pyriform, fusiform or spindle-shaped somata. Each soma gives rise to two to four straight, sometimes curved processes, which show varying patterns of arborization. The branches extend toward the ‘integrative area’, comprised of medial and lateral neuropil, or among major hypothalamic tracts; they are suggested to establish extra-hypothalamic contacts or to extend to adjoining nuclear zones where they may establish specific intrahypothalamic connections. CSF-contacting processes from some magnocellular and parvocellular neurons were encountered. In addition to drawing correlations between information obtained from Golgi- and Nissl preparations, an attempt has been made to understand the precise organization of neuronal elements and to study the scope and pattern of arborization in the hypothalamus of Calotes versicolor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barry J (1975) Essai de classification en technique de Golgi des diverses catégories de neurons du noyau paraventriculaire chez le Souris. CR Soc Biol 4:978–981

    Google Scholar 

  • Blähser S, Vigh-Teichmann I, Ueck M (1982) Cerebrospinal fluidcontacting neurons and other somatostatin-immunoreactive perikarya in the brains of tadpoles of Xenopus laevis. Cell Tissue Res 224:693–697

    Google Scholar 

  • Bons N (1974) Mise en évidence au microscope électronique de terminaisons nerveuses d'origine rétinienne dans l'hypothalamus antérieur du Canard. CR Acad Sci 278:319–321

    Google Scholar 

  • Braak H, Baumgarten HG, Falck B (1968) 5-Hydroxytryptamin im Gehirn der Eidechse Lacerta viridis und Lacerta muralis. Z Zellforsch 90:161–185

    Google Scholar 

  • Butler AB, Northcutt RG (1973) Architectonic studies of the diencephalon of Iguana iguana Linnaeus. J Comp Neurol 149:439–462

    Google Scholar 

  • Crosby EC, Showers MJ (1969) Comparative anatomy of the preoptic and hypothalamic areas. In: Haymaker W, Anderson E, Nauta WJH (eds) The hypothalamus. Thomas ChC, Springfield Ill, pp 61–135

    Google Scholar 

  • Crace JAF (1974) A cytoarchitectonic study of the diencephalon of the Tegu lizard, Tupinambis nigropunctatus. J Comp Neurol 153:215–227

    Google Scholar 

  • Fasolo A, Franzoni MF (1974) A Golgi study on tanycytes and liquor-contacting cells in the posterior hypothalamus of the newt. Cell Tissue Res 154:151–166

    Google Scholar 

  • Fasolo A, Franzoni MF (1977) A Golgi study on the hypothalamus of Amphibia. The neuronal typology. Cell Tissue Res 178:341–354

    Google Scholar 

  • Fasolo A, Franzoni MF (1983) The hypothalamus of Lacerta sicula R. II A Golgi study of the preoptic area. Cell Tissue Res 230:387–400

    Google Scholar 

  • Felten DL, Cashner KA (1979) Cytoarchitecture of the supraoptic nucleus. A Golgi study. Neuroendocrinology 29:221–230

    Google Scholar 

  • Franzoni MF, Fasolo (1982) The hypothalamus of Lacerta sicula R. I A Golgi study on the caudal hypothalamus. Cell Tissue Res 223:61–71

    Google Scholar 

  • Hartwig HG (1974) Electron microscopic evidence for a retinohypothalamic projection to the suprachiasmatic nucleus of Passer domesticus. Cell Tissue Res 153:89–99

    Google Scholar 

  • Hendrickson AE, Wagoner N, Cowan WM (1972) An autoradiographic and electron microscopic study of retino-hypothalamic connections. Z Zellforsch 135:1–26

    Google Scholar 

  • Korf HW, Viglietti-Panzica C, Panzica GC (1983) A Golgi study on the cerebrospinal fluid (CSF)-contacting neurons in the paraventricular nucleus of the Pekin duck. Cell Tissue Res 228:149–163

    Google Scholar 

  • LuQui IJ, Fox CA (1976) The supraoptic nucleus and the supraoptico-hypophysial tract in the monkey (Macaca mulatta). J Comp Neurol 168:7–40

    Google Scholar 

  • Marshall C (1980) Hypothalamic monoamines in lizards (Lacerta). A histofluorescence study. Cell Tissue Res 205:95–105

    Google Scholar 

  • Mazzi V, Franzoni MF, Fasolo A (1978) A Golgi study of the hypothalamus of Actinopterygii. I. The preoptic area. Cell Tissue Res 186:475–490

    Google Scholar 

  • Millhouse EO (1979) A Golgi anatomy of the rodent hypothalamus. In: Morgane PJ, Panksepp J (eds) Handbook of the hypothalamus, Vol I. M Dekker, New York and Basel, pp 221–266

    Google Scholar 

  • Moore RY (1973) Retinohypothalamic projection in mammals: A comparative study. Brain Res 49:403–409

    Google Scholar 

  • Moore RY, Klein DC (1974) Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N-acetyl-transferase activity. Brain Res 71:17–33

    Google Scholar 

  • Moore RY, Lenn NJ (1972) A retino-hypothalamic projection in the rat. J Comp Neurol 146:1–14

    Google Scholar 

  • Oksche A (1976) The neuroanatomical basis of comparative neuroendocrinology. Gen Comp Endocrinol 29:225–239

    Google Scholar 

  • Oksche A (1978a) Pattern of neuroendocrine cell complexes (subunits) in hypothalamic nuclei: Neurobiological and phylogenetic concepts. In: Bargmann W, Oksche A, Polenov A, Scharrer B (eds) Neurosecretion and neuroendocrine activity. Evolution, structure and function. Springer, Berlin-Heidelberg-New York, pp 64–71

    Google Scholar 

  • Oksche A (1978b) Evolution, differentiation and organization of hypothalamic systems controlling reproduction. Neurobiological concepts. In: Scott DE, Kozlowski GP, Weindl A (eds) Brain-endocrine interaction. III Neural hormones and reproduction, S Karger Basel, pp 1–15

    Google Scholar 

  • Panzica GC, Viglietti-Panzica C (1980) The preoptic area of the domestic fowl. I. A Golgi study. Cell Tissue Res 207:395–406

    Google Scholar 

  • Parent A (1979) Monoaminergic systems of the brain. In: Gans C, Northcutt RG, Ulinski P (eds) Biology of the Reptilia, Vol 10. Academic Press London, pp 247–285

    Google Scholar 

  • Parent A (1981) Comparative anatomy of the serotoninergic systems. J Physiol (Paris) 77:147–156

    Google Scholar 

  • Parent A, Poitras D (1974) Morphological organization of monoamine-containing neurones in the hypothalamus of the painted turtle (Chrysemys picta). J Comp Neurol 154:379–394

    Google Scholar 

  • Prasada Rao PD, Subhedar N (1977) A cytoarchitectonic study of the hypothalamus of the lizard, Calotes versicolor. Cell Tissue Res 180:63–85

    Google Scholar 

  • Prasada Rao PD, Subhedar N, Raju PD (1981) Cytoarchitectonic pattern of the hypothalamus in the cobra, Naja naja. Cell Tissue Res 217:505–529

    Google Scholar 

  • Ramón-Moliner E (1968) The morphology of dendrites. In: Bourne GH (ed) The structure and function of nervous tissue, Vol 1. Academic Press, New York and London, pp 205–265

    Google Scholar 

  • Ramón-Moliner E (1970) The Golgi-Cox technique. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin-Heidelberg-New York, pp 32–55

    Google Scholar 

  • Senn DC (1974) Notes on the amphibian and reptilian thalamus. Acta Anat (Basel) 87:555–596

    Google Scholar 

  • Silverman AJ, Zimmerman EA (1983) Magnocellular neurosecretory system. Ann Rev Neurosci 6:357–380

    Google Scholar 

  • Szentágothai J, Flerkó B, Mess B, Halász B (1968) Hypothalamic control of the anterior pituitary. Akadémiai Kiadó, Budapest

    Google Scholar 

  • Valverde F (1970) The Golgi method. A tool for comparative structural analyses. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin-Heidelberg-New York, pp 12–31

    Google Scholar 

  • Vigh B, Vigh-Teichmann I (1973) Comparative ultrastructure of the cerebrospinal fluid contacting neurons. Int Rev Cytol 35:189–252

    Google Scholar 

  • Vigh-Teichmann I, Vigh B (1974) The infundibular cerebrospinal fluid-contacting neurons. Adv Anatomy Embryology and Cell Biology 50/2. Springer, Berlin-Heidelberg-New York, pp

    Google Scholar 

  • Vigh-Teichmann I, Vigh B (1983) The system of cerebrospinal fluid-contacting neurons. Arch Histol Jpn 46:427–468

    Google Scholar 

  • Vigh-Teichmann I, Vigh B, Aros B (1970) Enzymhistochemische Studien am Nervensystem. IV. Acetylcholinesteraseaktivität im Liquorkontakt-Neuronensystem verschiedener Vertebraten. Histochemie 21:322–337

    Google Scholar 

  • Vigh-Teichmann I, Vigh B, Koritsánszky S (1970a) Liquorkontaktneurone im Nucleus paraventricularis. Z Zellforsch 103:483–501

    Google Scholar 

  • Vigh-Teichmann I, Vigh B, Koritsánszky S (1970b) Liquorkontaktneurone im Nucleus infundibularis. Z Zellforsch 108:17–34

    Google Scholar 

  • Vigh-Teichmann I, Vigh B, Aros B (1976) Ciliated neurons and different types of synapses in anterior hypothalamic nuclei of reptiles. Cell Tissue Res 174:139–160

    Google Scholar 

  • Viglietti-Panzica C, Panzica GC (1981) The hypothalamic magnocellular system in the domestic fowl. A Golgi and electronmicroscopic study. Cell Tissue Res 215:113–131

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The senior author is grateful to Professor A. Oksche for suggesting the line of work, and to Professors P.D. Prasada Rao and A.K. Dorle for encouragement. Thanks are also due to Mr. M.H. Adhaoo for photomicrographic assistance. Financial assistance provided by the University Grants Commission, New Delhi, under FAT (Code No. 11580)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subhedar, N., Rama Krishna, N.S. A Golgi-type study of the hypothalamus of the lizard, Calotes versicolor . Cell Tissue Res. 236, 399–411 (1984). https://doi.org/10.1007/BF00214244

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00214244

Key words

Navigation