Skip to main content
Log in

Internal motions of apo-neocarzinostatin as studied by 13C NMR methine relaxation at natural abundance

  • Research Papers
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

Dynamics of the backbone and some side chains of apo-neocarzinostatin, a 10.7 kDa carrier protein, have been studied from 13C relaxation rates R1, R2 and steady-state 13C-{1H} NOEs, measured at natural abundance. Relaxation data were obtained for 79 nonoverlapping Cα resonances and for 11 threonine Cβ single resonances. Except for three Cα relaxation rates, all data were analysed from a simple two-parameter spectral density function using the model-free approach of Lipari and Szabo. The corresponding C−H fragments exhibit fast (τe < 40 ps) restricted libration motions (S2=0.73 to 0.95). Global examination of the microdynamical parameters S2 and τe along the amino acid sequence gives no immediate correlation with structural elements. However, different trends for the three loops involved in the binding site are revealed. The β-ribbon comprising residues 37 to 47 is spatially restricted, with relatively large τe values in its hairpin region. The other β-ribbon (residues 72 to 87) and the large disordered loop ranging between residues 97–107 experience small-amplitude motions on a much faster (picosecond) time scale. The two N-terminal residues, Ala1 and Ala2, and the C-terminal residue Asn113, exhibit an additional slow motion on a subnanosecond time scale (400–500 ps). Similarly, the relaxation data for eight threonine side-chain Cβ must be interpreted in terms of a three-parameter spectral density function. They exhibit slower motions, on the nanosecond time scale (500–3000 ps). Three threonine (Thr65, Thr68, Thr81) side chains do not display a slow component, but an exchange contribution to the observed transverse relaxation rate R2 could not be excluded at these sites. The microdynamical parameters (S2, τe and R2ex) or (S sup2infslow , S sup2inffast and τslow) were obtained from a straightforward solution of the equations describing the relaxation data. They were calculated assuming an overall isotropic rotational correlation time τe for the protein of 5.7 ns, determined using standard procedures from R2/R1 ratios. However, it is shown that the product (1−S2)× τe is nearly independent of τe for residues not exhibiting slow motions on the nanosecond time scale. In addition, this parameter very closely follows the heteronuclear NOEs, which therefore could be good indices for local fast motions on the picosecond time scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abragam, A. (1961) Les Principes du Magnétisme Nucléaire, Presses Universitaires de France, Paris.

    Google Scholar 

  • Adjadj, É., Mispelter, J., Quiniou, É., Dimicoli, J.L., Favaudon, V. and Lhoste, J.M. (1990) Eur. J. Biochem., 190, 263–271.

    Google Scholar 

  • Adjadj, É., Quiniou, É., Mispelter, J., Favaudon, V. and Lhoste, J.M. (1992a) Eur. J. Biochem., 203, 505–511.

    Google Scholar 

  • Adjadj, É., Quiniou, É., Mispelter, J., Favaudon, V. and Lhoste, J.M. (1992b) Biochimie, 74, 853–858.

    Google Scholar 

  • Arvidsson, K., Jarvet, J., Allard, P. and Ehrenberg, A. (1994) J. Biomol. NMR, 4, 653–672.

    Google Scholar 

  • Barbato, G., Ikura, M., Kay, L.E., Pastor, R.W. and Bax, A. (1992) Biochemistry, 31, 5269–5278.

    Google Scholar 

  • Berglund, H., Kovacs, H., Dahlman-Wright, K., Gustafsson, J.A. and Härd, T. (1992) Biochemistry, 31, 12001–12011.

    Google Scholar 

  • Blackledge, M.L., Brüshweiler, R., Griesinger, C., Schmidt, J.M., Xu, P. and Ernst, R.R. (1993) Biochemistry, 32, 10960–10974.

    Google Scholar 

  • Cantor, C.R. and Schimmel, P.R. (1980) Biophysical Chemistry, Vol. II, Freeman, New York, NY, pp. 459–463.

    Google Scholar 

  • Careri, G., Fasella, P. and Gratton, E. (1975) CRC Crit. Rev. Biochem., 3, 141–164.

    Google Scholar 

  • Cheng, J.W., Lepre, C.A., Chambers, S.P., Fulghum, J.R., Thomson, J.A. and Moore, J.M. (1993) Biochemistry, 32, 9000–9010.

    Google Scholar 

  • Clore, G.M., Szabo, A., Bax, A., Kay, L.E., Driscoll, P.C. and Gronenborn, A.M. (1990a) J. Am. Chem. Soc., 112, 4989–4991.

    Google Scholar 

  • Clore, G.M., Driscoll, P.C., Wingfield, P.T. and Gronenborn, A.M. (1990b) Biochemistry, 29, 7387–7401.

    Google Scholar 

  • Constantine, K.L., Friedrichs, M.S., Goldfarb, V., Jeffrey, P.D., Sheriff, S. and Mueller, L. (1993) Proteins, 15, 290–311.

    Google Scholar 

  • Daragan, V.A., Kloczewiak, M.A. and Mayo, K.H. (1993) Biochemistry, 32, 10580–10590.

    Google Scholar 

  • Dellwo, M.J. and Wand, A.J. (1989) J. Am. Chem. Soc., 111, 4571–4578.

    Google Scholar 

  • Deverell, C., Morgan, R.E. and Strange, J.H. (1970) Mol. Phys., 18, 553–559.

    Google Scholar 

  • Farrow, N.A., Muhandiram, R., Singer, A.U., Pascal, S.M., Kay, C.M., Gish, G., Shoelson, S.E., Pawson, T., Forman-Kay, J.D. and Kay, L.E. (1994) Biochemistry, 33, 5984–6003.

    Google Scholar 

  • Favaudon, V. (1983) Biochimie, 65, 593–607.

    Google Scholar 

  • Frauenfelder, H., Sligar, S.G. and Wolynes, P.G. (1991) Science, 254, 1598–1603.

    Google Scholar 

  • Fushman, D., Weisemann, R., Thüring, H. and Rüterjans, H. (1994) J. Biomol. NMR, 4, 61–78.

    Google Scholar 

  • Grasberger, B.L., Gronenborn, A.M. and Clore, G.M. (1993) J. Mol. Biol., 230, 364–372.

    Google Scholar 

  • Jones, D.N.M., Searles, M.A., Shaw, G.L., Churchill, M.E.A., Ner, S.S., Keeler, J., Travers, A.A. and Neuhaus, D. (1994) Structure, 2, 609–627.

    Google Scholar 

  • Kappen, L.S., Napier, M.A. and Goldberg, I.H. (1980) Proc. Natl. Acad. Sci. USA, 77, 1970–1974.

    Google Scholar 

  • Karplus, M. (1986) Methods Enzymol., 131, 283–307.

    Google Scholar 

  • Kay, L.E., Jue, T.L., Bangerter, B. and Demou, P.C. (1987) J. Magn. Reson., 73, 558–564.

    Google Scholar 

  • Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972–8979.

    Google Scholar 

  • Kay, L.E., Nicholson, L.K., Delaglio, F., Bax, A. and Torchia, D.A. (1992) J. Magn. Reson., 97, 359–375.

    Google Scholar 

  • Kelsh, P.L., Ellena, J.F. and Cafiso, D.S. (1992) Biochemistry, 31, 5136–5144.

    Google Scholar 

  • Kemple, M.D., Yuan, P., Nollet, K.E., Fuchs, J.A., Silav, N. and Prendergast, F.G. (1994) Biophys. J., 66, 2111–2126.

    Google Scholar 

  • Kim, K.-H., Kwon, B.-M., Myers, A.G. and Rees, D.C. (1993) Science, 262, 1042–1045.

    Google Scholar 

  • Kraulis, P.J. (1991) J. Appl. Crystallogr., 24, 946–950.

    Google Scholar 

  • Lefèvre, C., Adjadj, É., Quiniou, É. and Mispelter, J. (1994) J. Biomol. NMR, 4, 689–702.

    Google Scholar 

  • Lepre, C.A., Cheng, J.-W. and Morre, J.M. (1993) J. Am. Chem. Soc., 115, 4929–4930.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546–4570.

    Google Scholar 

  • London, R.E. (1989) Methods Enzymol., 176, 358–375.

    Google Scholar 

  • McCammon, J.A. and Harvey, S.C. (1987) Dynamics of Proteins and Nucleic Acids, Cambridge University Press, Cambridge.

    Google Scholar 

  • Nicholson, L.K., Kay, L.E., Baldisseri, D.M., Arango, J., Young, P.E., Bax, A. and Torchia, D.A. (1992) Biochemistry, 31, 5253–5263.

    Google Scholar 

  • Nirmala, N.R. and Wagner, G. (1988) J. Am. Chem. Soc., 110, 7557–7558.

    Google Scholar 

  • Nirmala, N.R. and Wagner, G. (1989) J. Magn. Reson., 82, 659–661.

    Google Scholar 

  • Orekhov, V.Y., Pervushin, K.V. and Arseniev, A.S. (1994) Eur. J. Biochem., 219, 887–896.

    Google Scholar 

  • PalmerIII, A.G., Rance, M. and Wright, P.E. (1991) J. Am. Chem. Soc., 113, 4371–4380.

    Google Scholar 

  • PalmerIII, A.G., Skelton, N.J., Chazin, W.J., Wright, P.E. and Rance, M. (1992) Mol. Phys., 75, 699–711.

    Google Scholar 

  • PalmerIII, A.G., Hochstrasser, R.A., Millar, D.P., Rance, M. and Wright, P.E. (1993) J. Am. Chem. Soc., 115, 6333–6345.

    Google Scholar 

  • Peng, J.W., Thanabal, V. and Wagner, G. (1991) J. Magn. Reson., 95, 421–427.

    Google Scholar 

  • Peng, J.W. and Wagner, G. (1992a) J. Magn. Reson., 98, 308–332.

    Google Scholar 

  • Peng, J.W. and Wagner, G. (1992b) Biochemistry, 31, 8571–8586.

    Google Scholar 

  • Powers, R., Clore, G.M., Stahl, S.J., Wingfield, P.T. and Gronenborn, A. (1992) Biochemistry, 31, 9150–9157.

    Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1986) Numerical Recipes, Cambridge University Press, Cambridge.

    Google Scholar 

  • Redfield, C., Boyd, J., Smith, L.J., Smith, R.A.G. and Dobson, C.M. (1992) Biochemistry, 31, 10431–10437.

    Google Scholar 

  • Ribeiro, A.A., King, R., Restivo, C. and Jardetzky, O. (1980) J. Am. Chem. Soc., 102, 4040–4051.

    Google Scholar 

  • Ringe, D. and Petsko, G.A. (1985) Prog. Biophys. Mol. Biol., 45, 197–235.

    Google Scholar 

  • Schulz, G.E. and Schirmer, R.H. (1978) In Springer Advanced Texts in Chemistry, Vol. 1 (Ed., Cantor, C.R.) Springer, New York, NY, pp. 233–251.

    Google Scholar 

  • Shaka, A.J., Keeler, J., Frenkiel, T. and Freeman, R. (1983) J. Magn. Reson., 52, 335–338.

    Google Scholar 

  • Sklenář, V., Torchia, D. and Bax, A. (1987) J. Magn. Reson., 73, 375–379.

    Google Scholar 

  • Solomon, I. (1955) Phys. Rev., 99, 559–565.

    Google Scholar 

  • Stone, M.J., Fairbrother, W.J., PalmerIII, A.G., Reizer, J., Saier, M.H. and Wright, P.E. (1992) Biochemistry, 31, 4394–4406.

    Google Scholar 

  • Stone, M.J., Chandrasekhar, K., Holmgren, A., Wright, P.E. and Dyson, H.J. (1993) Biochemistry, 32, 426–435.

    Google Scholar 

  • Szyperski, T., Luginbühl, P., Otting, G., Güntert, P. and Wüthrich, K. (1993) J. Biomol. NMR, 3, 151–164.

    Google Scholar 

  • Takashima, H., Amiya, S. and Tobayashi, Y. (1991) J. Biochem., 109, 807–810.

    Google Scholar 

  • Teplyakov, A., Obmolova, G., Wilson, K. and Kuromizu, K. (1993) Eur. J. Biochem., 213, 737–741.

    Google Scholar 

  • VanMierlo, C.P.M., Darby, N.J., Keeler, J., Neuhaus, D. and Creighton, T.E. (1993) J. Mol. Biol., 229, 1125–1146.

    Google Scholar 

  • Wagner, G. and Wüthrich, K. (1986) Methods Enzymol., 131, 307–326.

    Google Scholar 

  • Wagner, G. (1993) Curr. Opin. Struct. Biol., 3, 748–754.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mispelter, J., Lefèvre, C., Adjadj, É. et al. Internal motions of apo-neocarzinostatin as studied by 13C NMR methine relaxation at natural abundance. J Biomol NMR 5, 233–244 (1995). https://doi.org/10.1007/BF00211751

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00211751

Keywords

Navigation