Skip to main content
Log in

Oxytocin-and vasopressin-immunoreactive nerve fibers in the pineal gland of the hedgehog, Erinaceus europaeus L.

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Oxytocin-and vasopressin-immunoreactive nerve fibers, apparently originating from a dorsal subunit of the paraventricular nucleus, were demonstrated in the pineal gland of the hedgehog. The majority of these fibers (pinealopetal projections) is intimately related to the capillaries of the pineal organ, whereas only a few elements are scattered throughout the pineal parenchyma. The number of peptidergic elements observed in the central portion of the pineal organ exceeds that of fibers located at the periphery. In relation to the functional state of the animals, the amount of immunoreactive material in these pinealopetal nerve fibers exhibits conspicuous variations. In hibernating hedgehogs (group 1), these nerve fibers were considerably richer in oxytocin than in non-hibernating or arousing winter animals (group 2 and 3). In contrast, only weak immunoreactivity for vasopressin was found in intrapineal nerve fibers of hibernating hedgehogs (group 1), whereas the fibers of arousing or non-hibernating hedgehogs (group 2 and 3) contained slightly larger amounts of vasopressin.

In the pineal organ of animals sacrificed during the summer period (group 4), no immunoreactivity for both neuropeptides was found.

The functional significance of the connection between the hypothalamic paraventricular nucleus and the pineal organ is discussed with special reference to the vascular terminals of the pinealopetal peptidergic nerve fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bargmann W (1954) Neurosekretion und hypothalamisch-hypophysäres System. Verh Anat Ges 51:30–45

    Google Scholar 

  • Branton WD, Mayeri E, Brownell P, Simon SB (1978) Evidence for local hormonal communication between neurones in Aplysia. Nature 274:70–72

    Google Scholar 

  • Buijs RM, Pévet P (1979) Vasopressin-and oxytocin-containing nerve fibers in the pineal gland and subcommissural organ of the rat. Cell Tissue Res 205:11–17

    Google Scholar 

  • Dafny N, McClung R, Strada SJ (1975) Neurophysiological properties of the pineal body. I. Field potentials. Life Sci 16:611–620

    Google Scholar 

  • Dogterom J, Snijdewint FGM, Pévet P, Buijs RM (1979a) On the presence of neuropeptides in the mammalian pineal gland and subcommissural organ. Prog Brain Res 52:465–470

    Google Scholar 

  • Dogterom J, Snijdewint FGM, Pévet P, Swaab DF (1979b) On the presence of vasopressin, oxytocin and vasotocin in the pineal gland, subcommissural organ and foetal pituitary gland: failure to demonstrate vasotocin in mammals. J Endocrinol 84:115–123

    Google Scholar 

  • Hofer HO, Merker G, Oksche A (1976) Atypische Formen des Pinealorgans der Säugetiere. Verh Anat Ges 70:97–102

    Google Scholar 

  • Kappers JA (1976) The mammalian pineal gland, a survey. Acta Neurochir 34:109–149

    Google Scholar 

  • Karlson P, Gersch M (1981) The evolution of hormonal systems. Leopoldina-Symposium, Schloß Reinhardsbrunn, March 22–26, 1981. Nova Acta Leopoldina NF (in press)

  • Knowles F, Vollrath L (1974) Neurosecretion — the final neuroendocrine pathway. Springer: Berlin Heidelberg New York

    Google Scholar 

  • Korf HW, Wagner U (1980) Evidence for a nervous connection between the brain and the pineal organ in the guinea pig. Cell Tissue Res 209:505–510

    Google Scholar 

  • Korf HW, Zimmerman NH (1980) Der nervöse Apparat im Pinealorgan von Passer domesticus. Verh Anat Ges 75 (in press)

  • Korf HW, Wagner U (1981) Nervous connections of the parietal eye in adult Lacerta sicula as demonstrated by anterograde and retrograde transport of horseradish peroxidase. Cell Tissue Res (in press)

  • Krisch B, Leonhardt H (1980) Luliberin and somatostatin fiber terminals in the subfornical organ of the rat. Cell Tissue Res 210:33–45

    Google Scholar 

  • Leonhardt H (1980) Ependym und circumventriculäre Organe. In: Oksche A, Vollrath L (eds) Handbuch der mikroskopischen Anatomie des Menschen. Springer: Berlin Heidelberg New York, pp 177–666. Bd IV/10

    Google Scholar 

  • Merker G, Blähser S, Zeisberger E (1980) Reactivity pattern of vasopressin-containing neurons and its relation to the antipyretic reaction of the pregnant guinea pig. Cell Tissue Res 212:47–61

    Google Scholar 

  • Möller W (1976) Paraffinum liquidum in einer Intermediumkombination für die Paraffineinbettung. Mikroskopie 32:100–104

    Google Scholar 

  • Møller M (1974) The ultrastructure of the human fetal pineal gland. Cell Tissue Res 152:13–30

    Google Scholar 

  • Møller M (1981) The innervation of the pineal gland of the Mongolian gerbil. Brain Res (in press)

  • Moore RY (1978) The innervation of the mammalian pineal gland. In: Reiter RJ (ed) The Pineal and Reproduction. Karger: Basel München Paris London New York Sidney, pp 1–29

    Google Scholar 

  • Nürnberger F (1981) Lokalisation und Aktivität des peptidergen neuroendokrinen Apparates im Zentralnervensystem von Winterschläfern (In preparation)

  • Oksche A (1965) Survey of the development and comparative morphology of the pineal organ. Prog Brain Res 10:3–29

    Google Scholar 

  • Oksche A (1976) The neuroanatomical basis of comparative endocrinology. Gen Comp Endocrinol 29:225–239

    Google Scholar 

  • Oksche A (1978) Patterns of neuroendocrine cell complexes (subunits) in hypothalamic nuclei: neurobiological and phylogenetic concepts. In: Bargmann W, Oksche A, Polenov A, Scharrer B (eds) Neurosecretion and neuroendocrine activity. Evolution, structure, and function. Springer: Berlin Heidelberg New York

    Google Scholar 

  • Oksche A (1980) The neurosecretory cell in the organization of the central nervous system: phylogenetic aspects. In: Vincent JD, Kordon C (eds) Cell Biology of hypothalamic neurosecretion. Colloques Internationaux du CNRS 280. Paris: CNRS, pp 27–41

    Google Scholar 

  • Pavel S (1978) Arginine vasotocin as a pineal hormone. J Neural Transm 13:135–155

    Google Scholar 

  • Pavel S (1979) The mechanism of action of vasotocin in the mammalian brain. Prog Brain Res 52:445–458

    Google Scholar 

  • Pévet P, Saboureau M (1973) L'épiphyse du herrison (Erinaceus europaeus L.) male. Z Zellforsch 143:367–385

    Google Scholar 

  • Pévet P, Ebels I, Swaab DF, Mud MT, Arimura A (1980) Presence of AVT-, MSH-, LHRH-, and somatostatin-like compounds in the rat pineal and their relationship with the UMO 5R pineal fraction: an immunocytochemical study. Cell Tissue Res 206:341–353

    Google Scholar 

  • Reiter RJ (1978) The pineal. Vol 3. In: Horrobin DF (ed) Annual Research Reviews, pp 1–236, Churchill Livingstone: Edinburgh

    Google Scholar 

  • Romijn HJ (1973) Structure and innervation of the pineal gland of the rabbit, Oryctolagus cuniculus (L). I. A light microscopical investigation. Z Zellforsch 139:473–485

    Google Scholar 

  • Romijn HJ (1975) Structure and innervation of the pineal gland of the rabbit, Oryctolagus cuniculus (L). III. An electron microscopic investigation of the innervation. Cell Tissue Res 157:25–51

    Google Scholar 

  • Rønnekleiv OK, Møller M (1979) Brain-pineal nervous connections in the rat: an ultrastructure study following habenular lesion. Exp Brain Res 37:551–562

    Google Scholar 

  • Rønnekleiv OK, Kelly MJ, Wuttke W (1980) Single unit recordings in the rat pineal gland: evidence for a habenulo-pineal neural connection. Exp Brain Res 39:187–192

    Google Scholar 

  • Rosenbloom AA, Fisher DA (1975a) Radioimmunoassayable AVT and AVP in adult mammalian brain tissue: comparison of normal and Brattleboro rats. Neuroendocrinology 17:354–361

    Google Scholar 

  • Rosenbloom AA, Fisher DA (1975b) Arginine vasotocin in the rabbit subcommissural organ. Endocrinology 96:1038–1039

    Google Scholar 

  • Semm P, Vollrath L (1978) Electrophysiological properties of single cells of the guinea pig epiphysis cerebri. Pflügers Arch 373R 55

  • Semm P, Vollrath L (1979) Electrophysiology of the guinea pig pineal organ: sympathetically influenced cells responding differently to light and darkness. Neurosci Lett 12:93–96

    Google Scholar 

  • Sternberger L (1974) Immunocytochemistry. Prentice Hall, Inc: Englewood Cliffs, NJ

    Google Scholar 

  • Suomalainen P (1960) Stress and neurosecretion in the hibernating hedgehog. Bull Museum Comp Zool Harvard Coll 124:271–283

    Google Scholar 

  • Swanson LW, Sawchenko PE (1980) Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinol 31:410–417

    Google Scholar 

  • Uddman R, Alumets J, Håkanson R, Loren I, Sundler F (1980) Vasoactive intestinal peptide (VIP) occurs in the nerves of the pineal gland. Experientia 36:1119–1120

    Google Scholar 

  • Ueck M (1979) Innervation of the vertebrate pineal. Prog Brain Res 52:45–88

    Google Scholar 

  • Vollrath L (1981) The pineal organ. In:Oksche A, Vollrath L (eds) Handbuch der mikroskopischen Anatomie des Menschen. Bd VI/7. Springer: Berlin Heidelberg New York

    Google Scholar 

  • Walker RJ (1981) Neurohormones and neurotransmitters in invertebrates. In: Karlson P, Gersch M (eds) The evolution of hormonal systems. Nova Acta Leopoldina NF (In press)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft

The authors are indebted to Professors A. Oksche and M. Ueck for stimulating discussions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nürnberger, F., Korf, H.W. Oxytocin-and vasopressin-immunoreactive nerve fibers in the pineal gland of the hedgehog, Erinaceus europaeus L.. Cell Tissue Res. 220, 87–97 (1981). https://doi.org/10.1007/BF00209968

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00209968

Key words

Navigation