Skip to main content
Log in

Visual detection of paradoxical motion in flies

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

From psychophysics it is known that humans easily perceive motion in Fourier-stimuli in which dots are displaced coherently into one direction. Furthermore, motion can be extracted from Drift-balanced stimuli in which the dots on average have no distinct direction of motion, or even in paradox Θ-motion stimuli where the dots are displaced opposite to the perceived direction of motion. Whereas Fourier-motion can be explained by very basic motion detectors and nonlinear preprocessing of the input can account for the detection of Drift-balanced motion, a hierarchical model with two layers of motion detectors was proposed to explain the perception of Θ-motion. The well described visual system of the fly allows to investigate whether these complex motion stimuli can be detected in a comparatively simple brain.

The detection of such motion stimuli was analyzed for various random-dot cinematograms with extracellular recordings from the motion-sensitive Hl-neuron in the third visual ganglion of the blowfly Calliphora erythrocephala. The results were compared to computer-simulations of a hierarchical model of motion detector networks.

For Fourier- and Drift-balanced motion stimuli, the Hl-neuron responds directionally selective to the moving object, whereas for Θ-motion stimuli, the preferred direction is given by the dot displacement. Assuming nonlinear preprocessing of the detector input, such as a half-wave rectification, elementary motion detectors of the correlation type can account for these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EMD :

elementary motion detector

References

  • Anstis SM (1978) Apparent movement. In: Held R, Leibowitz, HW, Teuber HL (eds) Handbook of sensory physiology: Perception vol VIII. Springer, Berlin Heidelberg New York, pp 655–673

    Google Scholar 

  • Barlow HB, Levick WR (1965) The mechanism of directionally selective units in rabbit's retina. J Physiol 178:477–504

    Google Scholar 

  • Bishop LG, Keehn DG, McCann GD (1968) Motion detection by interneurons of optic lobes and brain of the flies Calliphora phaenicia and Musca domestica. J Neurophysiol 31:509–525

    Google Scholar 

  • Borst A, Egelhaaf M (1989) Principles of motion detection. Trends Neurosci 12:297–306

    Google Scholar 

  • Braddick OJ (1974) A short-range process in apparent motion. Vision Res 14:519–527

    Google Scholar 

  • Buchner E, Götz KG, Straub C (1978) Elementary detectors for vertical movement in the visual system of Drosophila. Biol Cybern 31:235–242

    Google Scholar 

  • Buchner E (1984) Behavioural analysis of spatial vision in insects. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press, New York London, pp 561–621

    Google Scholar 

  • Chang JJ, Julesz B (1983) Displacement limits, directional anisotropy and direction versus form discrimination in random-dot cinematograms. Vision Res 23:639–646

    Google Scholar 

  • Chubb C, Sperling G (1988) Drift-balanced random stimuli: A general basis for studying non-Fourier motion perception. J Opt Soc Am 5:1986–2007

    Google Scholar 

  • Chubb C, Sperling G (1989) Two motion perception mechanisms revealed through distance-driven reversal of apparent motion. Proc Natl Acad Sci USA 86:2985–2989

    Google Scholar 

  • Collett TS (1980) Angular tracking and the optomotor response. An analysis of visual reflex interaction in a hoverfly. J Comp Physiol 140:145–158

    Google Scholar 

  • Collett TS, Land MF (1975) Visual control of flight behaviour in the hoverfly Syritta pipiens L. J Comp Physiol 99:1–66

    Google Scholar 

  • Doorn AJ van, Koenderink JJ (1983) The structure of the human motion detection system. IEEE Trans Syst Man Cybern. 13:916–922

    Google Scholar 

  • Eckert H (1980) Functional properties of the Hl-neuron in the third optic ganglion of the blowfly, Phoenicia. J Comp Physiol 135:29–39

    Google Scholar 

  • Egelhaaf M (1985a) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I. Behavioural constraints imposed on the neuronal network and the role of the optomotor system. Biol Cybern 52:123–140

    Google Scholar 

  • Egelhaaf M (1985b) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. II. Figure-Detection Cells, a new class of visual interneurones. Biol Cybern 52:195–209

    Google Scholar 

  • Egelhaaf M, Borst A (1989) Transient and steady-state response properties of movement detectors. J Opt Soc Am A 6:116–127

    Google Scholar 

  • Egelhaaf M, Borst A (1990a) Transient and steady-state response properties of movement detectors: Erratum. J Opt Soc Am A 7:172–172

    Google Scholar 

  • Egelhaaf M, Borst A (1990b) Is motion detected by the fly visual system in seperate on- and off-cannels? In: Elsner N (ed) Proc 18th Göttingen Neurobiol Conf. Thieme, Stuttgart New York, p 209

    Google Scholar 

  • Egelhaaf M, Borst A(1991) Are there seperate on- and off-channels in fly motion vision? Visual Neurosci (in press)

  • Egelhaaf M, Reichardt W (1987) Dynamic response properties of movement detectors: Theoretical analysis and electrophysiological investigation in the visual system of the fly. Biol Cybern 56:69–87

    Google Scholar 

  • Egelhaaf M, Hausen K, Reichardt W, Wehrhahn C (1988) Visual course control in flies relies on neuronal computation of object and background motion. Trends Neurosci 11:351–358

    Google Scholar 

  • Franceschini N, Kirschfeld K (1971) Les phenomènes de pseudopupille dans l'oeil composè de Drosophila. Kybernetik 9:159–182

    Google Scholar 

  • Franceschini N, Münster A, Heurkens G (1979) Äquatoriales und binokulares Sehen bei der Fliege Calliphora erythrocephala. Verh Dtsch Zool Ges p 209

  • Götz KG (1965) Die optischen Übertragungseigenschaften der Komplexaugen von Drosophila. Kybernetik 2:215–221

    Google Scholar 

  • Götz KG (1968) Flight control in Drosophila by visual perception of motion. Kybernetik 4:199–208

    Google Scholar 

  • Grind WA van de, Koenderink JJ T, Doorn AJ van (1986) The distribution of human motion detector properties in the monocular visual field. Vision Res 26:797–810

    Google Scholar 

  • Gregory RL, Harris JP (1984) Real and apparent movement nulled. Nature 307:729–730

    Google Scholar 

  • Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z Naturforsch 11b, 9/10:513–524

    Google Scholar 

  • Hausen K (1976) Struktur, Funktion und Konnektivität bewegungsempfindlicher Interneurone im dritten optischen Neuropil der Schmeissfliege Calliphora erythrocephala. Doctoral Dissertation, University of Tuebingen,

  • Hausen K (1982a) Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals. Biol Cybern 45:143–156

    Google Scholar 

  • Hausen K (1982b) Motion sensitive interneurons in the optomotor system of the fly. II. The Horizontal Cells: Receptive field organization and response characteristics. Biol Cybern 46:67–79

    Google Scholar 

  • Hausen K (1984) The lobula-complex of the fly: Structure, function and significance in visual behaviour. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press, New York London, pp 523–559

    Google Scholar 

  • Hausen K, Egelhaaf M (1989) Neural mechanisms of visual course control in insects. In: Stavenga D, Hardie R (eds) Facets of vision. Springer, Berlin Heidelberg New York London Paris Tokyo, pp 391–424

    Google Scholar 

  • Lelkens AMM, Koenderink JJ (1984) Illusory motion in visual displays. Vision Res 24:1083–1090

    Google Scholar 

  • Mastebroek HAK, Zaagman WH, Lenting BPM (1980) Movement detection: Performance of a wide-field element in the visual system of the blowfly. Vision Res 20:467–474

    Google Scholar 

  • Mikami A, Newsome WT, Wurtz RH (1986) Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT. J Neurophysiol 55:1308–1327

    Google Scholar 

  • Newsome WT, Mikami A, Wurtz RH (1986) Motion selectivity in macaque visual cortex. III. Psychophysics and physiology of apparent motion. J Neurophysiol 55:1340–1351

    Google Scholar 

  • Petersik JT, Hicks KI, Pantle A (1978) Apparent movement of successively generated subjective figures. Perception 7:371–383

    Google Scholar 

  • Poggio T, Reichardt W, Hausen K (1981) A neuronal circuitry for relative movement discrimination by the visual system of the fly. Naturwissenschaften 68:443–446

    Google Scholar 

  • Quenzer T (1990) Zur visuellen Wahrnehmung paradoxer Bewegungen durch die Fliege. Elektrophysiologische Ableitung am Hl-Neuron von Calliphora erythrocephala. Diplomarbeit der Fakultät für Biologie, Tübingen

  • Rapf D, Wehrhahn C (1991) Two distinct substrates for motion perception in man. In: Elsner N, Penzlin H (eds) Proc 19th Göttingen Neurobiol Conf. Thieme, Stuttgart New York, p 565

    Google Scholar 

  • Reichardt W (1957) Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems. Z Naturforsch 12b:448–457

    Google Scholar 

  • Reichardt W, Varjú D (1959) Übertragungseigenschaften im Auswertesystem für das Bewegungssehen. Z Naturforsch 14b:674–689

    Google Scholar 

  • Reichardt W (1961) Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In: Rosenblith WA (ed) Sensory communication. M.I.T. Press and John Wiley & Sons, New York London, pp 303–317

    Google Scholar 

  • Reichardt W (1987) Evaluation of optical motion information by movement detectors. J Comp Physiol A 161:533–547

    Google Scholar 

  • Santen JPH van, Sperling G (1985) Elaborated Reichardt detectory. J Opt Soc Am A 2:300–321

    Google Scholar 

  • Schuling FH, Mastebroek HAK, Bult R, Lenting BPM (1989) Properties of elementary movement detectors in the fly Calliphora erythrocephala. J Comp Physiol A 165:179–192

    Google Scholar 

  • Wagner H (1986a) Flight performance and visual control of the flight of the free-flying housefly (Musca domestica). II. Pursuit of targets. Phil Trans R Soc Lond B 312:553–579

    Google Scholar 

  • Wagner H (1986b) Flight performance and visual control of flight of the free-flying housefly (Musca domestica). I. Organization of the flight motor. Phil Trans R Soc Lond B 312:527–551

    Google Scholar 

  • Wagner H (1986c) Flight performance and visual control of flight of the free-flying housefly (Musca domestica). III. Interactions between angular movement induced by wide- and smallfield stimuli. Phil Trans R Soc Lond B 312:581–595

    Google Scholar 

  • Wehrhahn C, Reichardt W (1975) Visually induced height orientation of the fly Musca domestica. Biol Cybern 20:37–50

    Google Scholar 

  • Wehrhahn C, Poggio T, Bülthoff H (1982) Tracking and chasing in houseflies (Musca). Biol Cybern 45:123–130

    Google Scholar 

  • Zaagman WH, Mastebroek HAK, Buyse T, Kuiper JW (1977) Receptive field characteristics of a directionally selective movement detector in the visual system of the blowfly. J Comp Physiol 116:39–50

    Google Scholar 

  • Zanker JM (1990) H-motion: A new psychophysical paradigm indicating two levels of visual motion perception. Naturwissenschaften 77:243–246

    Google Scholar 

  • Zanker JM, Hüpgens IS, Quenzer T (1991) Behavioural response of the fly to Fourier-, driftbalanced and paradox motion stimuli (Theta-motion) In: Elsner N, Penzlin H (eds) Proc 19th Göttingen Neurobiol Conference. Thieme, Stuttgart New York, p 280

    Google Scholar 

  • Zeil J (1983) Sexual dimorphism in the visual system of flies: The free flight behaviour of male Bibionidae (Diptera). J Comp Physiol 150:395–412

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quenzer, T., Zanker, J.M. Visual detection of paradoxical motion in flies. J Comp Physiol A 169, 331–340 (1991). https://doi.org/10.1007/BF00206997

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00206997

Key words

Navigation