Skip to main content
Log in

Plasticity of the landing response of Drosophila melanogaster

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

Fruitflies (Drosophila melanogaster) may respond with landing reactions in tethered flight to unilateral progressive motion of single vertical dark stripes. The response frequency to repeated unilateral stimulation has a characteristic time course, a fast increase followed by a slower decrease. This behaviour is explained by the habituation of the input channels to a leaky integrator. The half-life of the integrated signal is in the range of 1 s. ‘Contralateral sensitization’ (CoS) describes the sensitization of the landing response to unilateral stimuli by preceding contralateral stimulation. It acts by increasing the initial reactivity, which habituates. The effects of CoS are thus still obvious after 1 min of repetitive stimulation. CoS can effectively be mediated by movement stimuli as well as by flickering light. We also show that binocular rotation rather than unilateral back to front motion inhibits the landing response (in the monocular part of the visual field). The biological significance of the described temporal characteristics of the landing response system and their possible neuronal basis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CoS :

contralateral sensitization

References

  • Bausenwein B (1988) Neuronale Aktivitätsmarkierung während visueller Flugsteuerung von Drosophila melanogaster. Dissertation, Universität Würzburg, FRG

    Google Scholar 

  • Borst A (1989) Temporal processing of excitatory and inhibitory motion stimuli in the fly's landing system. Naturwissenschaften 76:531–534

    Google Scholar 

  • Borst A (1990) How do flies land? From behavior to neuronal circuits. BioScience 40:292–299

    Google Scholar 

  • Borst A, Bahde S (1986) What kind of movement detector is triggering the landing response of the housefly? Biol Cybern 55:59–69

    Google Scholar 

  • Borst A, Bahde S (1987) Comparison between the movement detection system underlying the optomotor and the landing response in the housefly. Biol Cybern 56:217–224

    Google Scholar 

  • Borst A, Bahde S (1988) Visual information processing in the fly's landing system. J Comp Physiol A 163:167–173

    Google Scholar 

  • Braitenberg V, Taddei-Ferretti C (1966) Landing reaction of Musca domestica induced by visual stimuli. Naturwissenschaften 53:155–156

    Google Scholar 

  • Buchner E, Buchner S, Bülthoff I (1984). Deoxyglucose mapping of nervous activity induced in Drosophila brain by visual movement. J Comp Physiol A 155:471–483

    Google Scholar 

  • Buchner E, Bader R, Buchner S, Cox J, Emson PC, Flory E, Heizmann CW, Hemm S, Hofbauer A, Oertel WH (1988) Cell-specific immunoprobes for the brain of normal and mutant Drosophila melanogaster. Cell Tissue Res 253:357–370

    Google Scholar 

  • Eckert H, Hamdorf K (1980) Excitatory and inhibitory response components in the landing response of the blowfly Calliphora erythrocephala. J Comp Physiol 138:253–264

    Google Scholar 

  • Eckert H, Hamdorf K (1983) Does a homogeneous population of elementary movement detectors activate the landing response of blowflies, Calliphora erythrocephala? Biol Cybern 48:11–18

    Google Scholar 

  • Eckert H, Flicke B, Hamdorf K (1979) Excitation and inhibition in the activation of the landing response of the blowfly Calliphora erythrocephala. Naturwissenschaften 66:368

    Google Scholar 

  • Erber J, Schildberger KJ (1980) Conditioning of an antennal reflex of visual stimuli in bees (Apis mellifera L.). J Comp Physiol 135:217–225

    Google Scholar 

  • Fischbach K-F (1981) Habituation and sensitization of the landing response of Drosophila melanogaster. Naturwissenschaften 68:332

    Google Scholar 

  • Fischbach K-F (1983) Neurogenetik am Beispiel des visuellen Systems von Drosophila melanogaster. Habilitationsschrift, Würzburg

  • Fischbach K-F, Bausenwein B (1988) Habituation and sensitization of the landing response of Drosophila melanogaster. II. Receptive field size of habituating units. In: Herting G, Spatz H-Ch (eds) Modulation of synaptic transmission and plasticity in nervous systems. Springer, Berlin Heidelberg New York London Paris Tokyo, pp 369–386

    Google Scholar 

  • Fischbach K-F, Dittrich APM (1989) The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res 258:441–475

    Google Scholar 

  • Fischbach K-F, Waldvogel F-M (1988) Plasticity in the visual system of Drosophila melanogaster. In: Elsner N, Barth FG (eds): Sense organs. Georg Thieme, Stuttgart New York, pp 32

    Google Scholar 

  • Goodman CS (1960) The landing responses of insects. The landing response of the fly Lucilia sericata and other Calliphorinae. J Exp Biol 37:854–878

    Google Scholar 

  • Götz KG (1964) Optomotorische Untersuchungen des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2:77–92

    Google Scholar 

  • Hausen K (1981) Monocular and binocular computation of motion in the lobula plate of the fly. Verh Dtsch Zool Ges 1981, pp 49–70

    Google Scholar 

  • Heisenberg M, Wolf R (1984) Vision in Drosophila. Genetics of microbehavior. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Jacob KG, Willmund R, Folkers E, Fischbach KF, Spatz HCh (1977) T-maze photo taxis of Drosophila melanogaster and several mutants in the visual system. J Comp Physiol 116:209–225

    Google Scholar 

  • Laughlin SB (1980) Neural principles in the visual system. In: Autrum H (ed) Handbook of Sensory Physiology, VII/6B. Springer, Berlin Heidelberg New York, pp 133–280

    Google Scholar 

  • Kandel ER (1981) Behavioral biology of Aplysia. WH Freeman, San Francisco

    Google Scholar 

  • Nässel DR (1988) Serotonin and serotonin-immunoreactive neurons in the nervous system of insects. Prog Neurobiol 30:1–85

    Google Scholar 

  • Pollard JH (1977) Numerical and statistical techniques. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Precht M (1982) Bio-Statistik Teil 1: Eine Einführung für Studierende der biologischen Wissenschaften. Oldenbourg, München Wien

    Google Scholar 

  • Rees C, Spatz HC (1989) Habituation of the landing response of Drosophila wild-type and mutants defective in olfactory learning. J Neurogenetics 5:105–118

    Google Scholar 

  • Taddei-Ferretti C, Fernandez Perez de Talens A (1973) Landing reaction of Musca domestica IV. A. Monocular and binocular vision; B. Relationships between landing and optomotor reactions. Z Naturforsch 28c:579–592

    Google Scholar 

  • Wehrhahn C, Hausen K, Zanker J (1981) Is the landing response of the housefly driven by motion of a flowfield? Biol Cybern 41:91–99

    Google Scholar 

  • Wittekind W (1987) Analyse des stereotypen und insbesondere plastischen Landeverhaltens von Drosophila melanogaster. Dissertation, Universität Freiburg, FRG

    Google Scholar 

  • Wittekind WC, Spatz HCh (1988) Habituation of the landing response of Drosophila. In: Herting G, Spatz HC (eds) Modulation of synaptic transmission and plasticity in nervous systems. Springer, Berlin Heidelberg New York London Paris Tokyo, pp 351–368

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldvogel, FM., Fischbach, KF. Plasticity of the landing response of Drosophila melanogaster . J Comp Physiol A 169, 323–330 (1991). https://doi.org/10.1007/BF00206996

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00206996

Key words

Navigation