Skip to main content
Log in

Kinetic study into the irreversible thermal denaturation of bacteriorhodopsin

  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We report on a differential scanning calorimetry study of native purple membranes under the following solvent conditions: 50 mM carbonate-bicarbonate, 100 mM NaCl, pH 9.5 and 190 mM phosphate, pH 7.5. The calorimetric transitions for bacteriorhodopsin denaturation are highly scanning-rate dependent, which indicates that the thermal denaturation is under kinetic control. This result is confirmed by a spectrophotometric study on the kinetics of the thermal denaturation of this protein. The calorimetric data at pH 9.5 conform to the two-state irreversible model. Comments are made regarding the information obtainable from differential scanning calorimetry studies on bacteriorhodopsin denaturation and the effect of irreversibility on the stability of membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bertazzon A, Tian GH, Lamblin A, Tsong TY (1990) Enthalpic and entropic contributions to actin stability: calorimetry, circular dichroism, and fluorescence study and effects of calcium. Biochemistry 29:291–298

    Google Scholar 

  • Brandts JF, Hu CQ, Lin LN, Mas MT (1989) A simple model for proteins with interacting domains. Applications to scanning calorimetry data. Biochemistry 28:8588–8596

    Google Scholar 

  • Brouillette CG, McMichens RB, Stern LJ, Khorana HG (1989) Structure and thermal stability of monomeric bacteriorhodopsin in mixed phospholipid/detergent micelles. Proteins 5:38–46

    Google Scholar 

  • Brouillette CG, Muccio DD, Finney TK (1987) pH dependence of bacteriorhodopsin thermal unfolding. Biochemistry 26:7431–7438

    Google Scholar 

  • Cladera J, Galisteoa ML, Duñac M, Mateo PL, Padros E (1988) Thermal denaturation of deionized and native purple membranes. Biochim Biophys Acta 943:148–156

    Google Scholar 

  • Cladera J, Galisteo ML, Sabes M, Mateo PL, Padros E (1992) The role of retinal in the thermal stability of the purple membrane. Eur J Biochem 207:581–585

    Google Scholar 

  • Conejero-Lara F, Mateo PL, Aviles FX, Sanchez-Ruiz JM (1991) Effect of Zn2+ on the thermal denaturation of carboxypeptidase B. Biochemistry 30:2067–2072

    Google Scholar 

  • Edge V, Allewell NM, Sturtevant JM (1985) High-resolution differential scanning calorimetric analysis of the subunits of Escherichia coli aspartate transcarbamoylase. Biochemistry 24:5899–5906

    Google Scholar 

  • Freire E, van Osdol WW, Mayorga OL, Sanchez-Ruiz JM (1990) Calorimetrically determined dynamics of complex unfolding transitions in proteins. Annu Rev Biophys Biophys Chem 19:159–188

    Google Scholar 

  • Galisteo ML, Mateo PL, Sanchez-Ruiz JM (1991) Kinetic study on the irreversible thermal denaturation of phosphoglycerate kinase. Biochemistry 30:2061–2066

    Google Scholar 

  • Goins B, Freire E (1988) Thermal stability and intersubunit interactions of cholera toxin in solution and in association with its cell-surface receptor ganglioside G m1 . Biochemistry 27:2046–2052

    Google Scholar 

  • Hu CQ, Sturtevant JM (1987) Thermodynamic study of yeast phosphoglycerate kinase. Biochemistry 26:178–182

    Google Scholar 

  • Jackson MB, Sturtevant JM (1978) Phase behavior of the purple membranes of Halobacterium halobium. Biochemistry 17:911–915

    Google Scholar 

  • Kahn TW Sturtevant JM, Engelman DM (1992) Thermodynamic measurements of the contributions of helix-connecting loops and of retinal to the stability of bacteriorhodopsin. Biochemistry 31:8829–8839

    Google Scholar 

  • Khorana HG (1988) Bacteriorhodopsin, a membrane protein that uses light to translocate protons. J Biol Chem 263:7439–7442

    Google Scholar 

  • Klibanov AM, Ahern TJ (1987) Thermal stability of proteins. In: Oxender DL, Fox CF (eds) Protein engineering, Alan R. Liss, New York, pp 213–218

    Google Scholar 

  • Kresheck GC, Lin CT, Williamson LN, Mason WR, Jang DJ, ElSayed MA (1990) The thermal stability of native, delipidated, deionized and regenerated bacteriorhodopsin. Photochem Photobiol 7:289–302

    Google Scholar 

  • Lumry R, Eyring H (1954) Conformation changes of proteins. J Phys Chem 58:110–120

    Google Scholar 

  • Lysko KA, Carlson R, Taverna R, Snow J, Brandts JF (1981) Protein involvement in structural transitions of erythrocyte ghosts. Use of thermal gel analysis to detect protein aggregation. Biochemistry 20:5570–5576

    Google Scholar 

  • Maglova L, Guleva D, Chekulaeva L, Atanasov B (1990) A calorimetric study of white and purple membranes. Biochim Biophys Acta 1017:217–220

    Google Scholar 

  • Manly SP, Matthews KS, Sturtevant JM (1985) Thermal denaturation of the core protein of lac repressor. Biochemistry 24:3842–3846

    Google Scholar 

  • Morin PE, Diggs D, Freire E (1990) Thermal stability of membranereconstituted yeast cytochrome c oxidase. Biochemistry 29:781–788

    Google Scholar 

  • Oesterhelt D, Hess B (1973) Reversible photolysis of the purple complex in the purple membrane of Halobacterium halobium. Eur J Biochem 37:316–326

    Google Scholar 

  • Oesterhelt D, Stoeckenius W (1974) Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol 31:667–678

    Google Scholar 

  • Privalov PL (1980) Scanning microcalorimeters for studying macromolecules. Pure Appl Chem 52:479–497

    Google Scholar 

  • Privalov PL (1982) Stability of proteins. Proteins which do not present a single cooperative system. Adv Prot Chem 35:1–104

    Google Scholar 

  • Privalov PL, Medved LV (1982) Domains in the fibrinogen molecule. J Mol Biol 159:665–683

    Google Scholar 

  • Rigell WR, Freire E (1987) Differential detergent solubility investigation of thermally induced transitions in cytochrome c oxidase. Biochemistry 26:4366–4371

    Google Scholar 

  • Ruiz-Sanz J, Ruiz-Cabello J, Mateo PL, Cortijo M (1992) The thermal transition in crude myelin proteolipid has lipid rather than protein origin. Eur Biophys J 21:71–76

    Google Scholar 

  • Sanchez-Ruiz JM (1992) Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry. Biophys J 61:921–935

    Google Scholar 

  • Sanchez-Ruiz JM, Lopez-Lacomba JL, Cortijo M, Mateo PL (1988) Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry 27:1648–1652

    Google Scholar 

  • Sanchez-Ruiz JM, Mateo PL (1987) Differential scanning calorimetry of membrane proteins. Cell Biol Rev 11:15–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: J. M. Sanchez-Ruiz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galisteo, M.L., Sanchez-Ruiz, J.M. Kinetic study into the irreversible thermal denaturation of bacteriorhodopsin. Eur Biophys J 22, 25–30 (1993). https://doi.org/10.1007/BF00205809

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00205809

Key words

Navigation