Skip to main content
Log in

Anisotropic pyrite: A polishing effect

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Some 250 pyrite samples from 50 localities were examined by ore microscopic methods. Two final polishing procedures were applied during sample preparation: (a) 0.25 μm or 0.1 μm diamond pastes on “Microcloth”, (b) an alkaline silica solution on “Microcloth”. With the exception of (111) sections, procedure (a) always resulted in the observation of optical anisotropy, while procedure (b) led to isotropic behaviour. Electron channeling patterns showed a strongly damaged surface for samples prepared by method (a), whereas for samples prepared by method (b) and for untreated pyrite faces an undisturbed lattice was observed. This strongly indicates that pyrite is optically isotropic, and that the frequently observed anisotropy is caused by surface deformation due to mechanical polishing procedures. Studies of the isotypic mineral sperrylite (PtAs2), as well as similar investigations on cuprite and minerals of the spinel group, confirm the correlation between surface deformation and optical anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bayliss P (1977a) Crystal structure refinement of a weakly anisotropic pyrite. Am Mineral 62:1168–1172

    Google Scholar 

  • Bayliss P (1977b) Crystal structure refinement of arsenian ullmanite. Am Mineral 62:369–373

    Google Scholar 

  • Bayliss P (1989) Crystal chemistry and crystallography of some minerals within the pyrite group. Am Mineral 74:1168–1176

    Google Scholar 

  • Berek M (1937) Optische Meßmethoden im polarisierten Auflicht. Fortschr Min 22:1–104

    Google Scholar 

  • Bragg WL (1914) The analysis of crystals by the X-ray spectrometer. Proc Royal Soc A89:468–489

    Google Scholar 

  • Eggleston CM, Hochella MF Jr (1992) Scanning tunneling microscopy of pyrite {100}: Surface structure and step reconstruction. Am Mineral 77:221–224

    Google Scholar 

  • Ehrenberg H (1928) Das Auftreten und die Eigenschaften ehemaliger FeS2-Gele, insbesondere auf metasomatischen Blei-Zinkerz-lagerstätten. N Jb Mineral, Beilagen 57, Abt. A:1303–1320

    Google Scholar 

  • Fetisov GV, Zhukov SG (1992) Influence of the specimen preparation method on the results of x-ray structural analysis. Sov Phys Crystallogr 37 (4):461–465

    Google Scholar 

  • Fiechter S, Birkholz M, Hartmann A, Dulski P, Giersig M, Tributsch H (1992) The microstructure and stoichiometry of pyrite FeS2-x. J Mater Res 7/7:1829–1838

    Google Scholar 

  • Finklea III SL, Cathey L, Amma EL (1976) Investigation of the bonding mechanism in pyrite using the Mössbauer effect. Acta Crystallogr A32:529–537

    Google Scholar 

  • Fleet ME, Burns PC (1990) Structure and twinning of cobaltite. Can Mineral 28:719–723

    Google Scholar 

  • Fynn GW, Powell WJA (1988) Cutting and polishing optical and electronic materials. (2nd ed) Adam Hilger Bristol

    Google Scholar 

  • Gibbons GS (1967) Optical anisotropy in pyrite. Am Mineral 52:359–370

    Google Scholar 

  • Klemm DD (1962) Anisotropieefekte bei kubischen Erzmineralen. N Jb Mineral Abh 97:337–356

    Google Scholar 

  • Laflamme JHG (1990) The preparation of materials for microscopic study. In: Jambor JL and Vaughan DJ (eds) Advanced microscopic studies of ore minerals. MAC Short Course Handbook 17, pp. 37–66

  • Libowitzky E (1991) Donathite: An intergrowth of magnetite and chromite, causing form birefringence. N Jb Mineral Mh 1991:449–456

    Google Scholar 

  • Libowitzky E (1994a) Optical anisotropy of cuprite caused by polishing. Can Mineral 32/2: in press

  • Libowitzky E (1994b) Optical anisotropy in the spinel group: A polishing effect. Eur Jour Mineral 6/2: in press

  • Lloyd GE (1987) Atomic number and crystallographic contrast images with the SEM: a review of backscattered electron techniques. Min Mag 51:3–19

    Google Scholar 

  • Murowchick JB (1992) Marcasite inversion and the petrographic determination of pyrite ancestry. Econ Geol 87:1141–1152

    Google Scholar 

  • Pauly H (1986) Effects of different polishing methods on the reflectance of silicon. Tscherm Mineral Petrogr Mitt 35:261–273

    Google Scholar 

  • Reimer L, Pfefferkorn G (1977) Rasterelektronenmikroskopie. Springer, Berlin Heidelberg New York (2nd ed)

    Google Scholar 

  • Schneiderhöhn H (1930) Mineralchemische und mikroskopische Beobachtungen an Blei-Zink- und Kieserzen der Deutsch-Blei-scharley-Grube/Oberschlesien. Chem Erde 5:385–395

    Google Scholar 

  • Seemann R (1979) Die sedimentären Eisenvererzungen der Karstgebiete der Nördlichen Kalkalpen. Ann Naturhist Mus Wien 82:209–289

    Google Scholar 

  • Smith FG (1942) Variation in the properties of pyrite. Am Mineral 27:1–19

    Google Scholar 

  • Spindler P (1993) Neue Untersuchungen zur Mineralogie und Geochemie der Basisbreccie des Steirischen Erzberges, Österreich. Österr Akad Wiss, Math-Naturwiss Kl, Sitzungsber Abt. I, 199 (1991/92):1–26

    Google Scholar 

  • Stanton RL (1957) Studies of polished surfaces of pyrite, and some implications. Can Mineral 6:87–118

    Google Scholar 

  • van der Veen RW (1925) Mineragraphic and ore deposits. The Hague 1 (1925); cited in: Schneiderhöhn H, Ramdohr P (1931) Lehrbuch der Erzmikroskopie. Vol. 2, Gebrüder Bornträger

  • Wächtershäuser G (1992) Groundworks for an evolutionary biochemistry: in iron-sulphur world. Progr Biophys Mol Biol 58:85–201

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Libowitzky, E. Anisotropic pyrite: A polishing effect. Phys Chem Minerals 21, 97–103 (1994). https://doi.org/10.1007/BF00205220

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00205220

Keywords

Navigation