Skip to main content
Log in

Investigation of Crystal-Chemical Features of Pyrite and Conditions of Its Formation

  • PHYICAL METHODS OF INVESTIGATION
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The process of pyrite formation has been studied by nuclear gamma resonance, X-ray diffraction, and thermogravimetric analysis in combination with thermomagnetic measurements. It has been established at which sulfur content in the charge pyrite begins forming, whether this phase grows smoothly or intermittently with an increase in the sulfur content, what other minerals are formed in this process, and also at what sulfur content in the charge the accompanying minerals practically disappear and pyrite is formed (and, obviously, sulfur remains in the charge). According to the Fe–S phase diagram, pyrite is formed in the range from 37.4 to 60.05 wt % sulfur; i.e., it appears only above a certain critical content of sulfur in the samples. Pure pyrite was obtained at a sulfur content of 60.05 wt % and higher. The synthesis was carried out in a vacuum (~1 Pa) in quartz ampoules at a temperature of 1273 K. According to the research results, pyrite (FeS2) is formed from pyrrhotite and in pyrrhotite. The data obtained can be used in cosmochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. Wikipedia: Venus is shrouded by an opaque layer of highly reflective clouds of sulfuric acid. High surface temperatures are caused by the greenhouse effect. The major sulfur-containing gas in Venus’ atmosphere is sulfur dioxide.

REFERENCES

  1. R. I. Gait and D. Dumka, Can. Mineral. 24, 685 (1986).

    CAS  Google Scholar 

  2. G. Lynch, Can. Mineral. 33, 105 (1995).

    CAS  Google Scholar 

  3. G. V. Novikov, N. A. Shul’ga, N. V. Lobus, and O. Yu. Bogdanova, Litolog. Polezn. Iskop. 1, 65 (2020).

    Google Scholar 

  4. D. J. Vaughan and J. R. Craig, Mineral Chemistry of Metal Sulfides (Cambridge University Press, Cambridge, 1978).

    Google Scholar 

  5. A. C. L. Larocque, C. J. Hodgson, L. J. Cabri, and J. A. Jackman, Can. Mineral. 33, 373 (1995).

    CAS  Google Scholar 

  6. W. B. Pearson, The Crystal Chemistry and Physics of Metal and Alloys (Wiley, New York, 1972).

    Google Scholar 

  7. D. Rickard and G. Luther, Chem. Rev. 107, 514 (2007). https://doi.org/10.1021/cr0503658

    Article  CAS  PubMed  Google Scholar 

  8. M. E. Fleet, Can. Mineral. 10, 225 (1970).

    CAS  Google Scholar 

  9. P. Bayliss, Am. Mineral. 62, 1168 (1977).

    CAS  Google Scholar 

  10. P. G. Manning and L. A. Ash, Can. Mineral. 17, 111 (1979).

    CAS  Google Scholar 

  11. S. P. Gubin, Yu. A. Koksharov, and Yu.V. Ioni, Russ. J. Inorg. Chem. 66, 1 (2021). https://doi.org/10.1134/S0036023621010034

    Article  CAS  Google Scholar 

  12. Santosh D. Barma, Ultrason. Sonochem. 50, 15 (2019).

    Article  CAS  Google Scholar 

  13. S. Agheli, A. Hassanzadeh, V. Behzad, et al., Int. J. Mining Sci. Technol. 28, 167 (2018).

    Article  CAS  Google Scholar 

  14. S. Chen, P. Xiong, W. Zhan, et al., Miner. Eng. 122, 38 (2018).

    Article  CAS  Google Scholar 

  15. A. Galukhin, A. Gerasimov, I. Nikolaev, et al., Energy Fuels 31, 6777 (2017).

    Article  CAS  Google Scholar 

  16. F. Bai, Y. Liu, C. Lai, et al., Energy Fuels 34, 296 (2020).

    Google Scholar 

  17. G. A. Dorogina, R. I. Gulyaeva, E. N. Selivanov, and V. F. Balakirev, Russ. J. Inorg. Chem. 60, 301 (2015). https://doi.org/10.1134/S003602361503002X

    Article  CAS  Google Scholar 

  18. A. E. Dosovitskii, E. V. Grishechkina, A. L. Mikhlin, et al., Russ. J. Inorg. Chem. 62, 702 (2017). https://doi.org/10.1134/S0036023617060055

    Article  CAS  Google Scholar 

  19. A. G. Zvegintsev and V.V. Onufrienok, Geomagn. Aeronom. 21, 763 (1981).

    Google Scholar 

  20. V. V. Onufrienok and A. V. Chzhan, Point Defects and Their Effect on Physical Properties of Crystals (Krasnoyarsk, 2018) [in Russian]. https://doi.org/10.36718/978-5-94617-446-6

  21. V. V. Onufrienok and A. G. Zvegintsev, Inorg. Mater. 18, 301 (1982).

    Google Scholar 

  22. V. V. Onufrienok, Inorg. Mater. 41, 650 (2005). https://doi.org/10.1007/s10789-005-0184-z

    Article  CAS  Google Scholar 

  23. E. N. Selivanov, R. I. Gulyaeva, and A.D. Vershinin, Inorg. Mater. 44, 438 (2008). https://doi.org/10.1134/S0020168508040201

    Article  CAS  Google Scholar 

  24. V. V. Onufrienok, Soviet Phys. J. 32, 283 (1989). https://doi.org/10.1007/BF00897269

    Article  Google Scholar 

  25. V. V. Onufrienok, Fiz. Tverd. Tela 23, 3193 (1981).

    CAS  Google Scholar 

Download references

Funding

The work was performed within the framework of the State assignment of Kirensky Institute of Physics SB RAS in the field of basic research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Onufrienok.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onufrienok, V.V., Chzhan, A.V. Investigation of Crystal-Chemical Features of Pyrite and Conditions of Its Formation. Russ. J. Inorg. Chem. 66, 1001–1010 (2021). https://doi.org/10.1134/S003602362107010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362107010X

Keywords:

Navigation