Skip to main content
Log in

Two-neuron networks

II. Leaky integrator pacemaker models

  • Original Papers
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The behavior of two pacemaker neurons simulated by leaky integrators and connected reciprocally by synapses was studied. In every case the firing of both neurons phase-locks. The resulting limit cycle may or may not show simultaneous firing of both neurons. When both synapses are excitatory, phase-locking with simultaneous neuronal firing is always present. When one synapse is excitatory and the other inhibitory, phase-locking is also present always, while the neurons may or may not fire simultaneously. For a restricted set of parameters, bistability appears; the initial conditions determine whether or not the limit cycle presents simultaneous firing. When both synapses are inhibitory, the system phase-locks without simultaneous firing for almost every set of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen T (1983) On the arithmetic of phase-locking: coupled neurons as a lattice on R2. Physica 6D:305–320

    Google Scholar 

  • Angelini F, Petracci D (1978) Significance of phase-locking measurements as a test for neural encoding models. Biol Cybern 30:169–177

    Article  Google Scholar 

  • Arnold V (1980) Chapitres supplémentaires de la théorie des equations différentielles ordinaires. Mir, Moscow

    Google Scholar 

  • Budelli R, Soto E, González-Estrada M, Macadar O (1984) A spike generator mechanism model simulates utricular responses to sinusoidal vibrations. Biol Cybern 54:237–244

    Google Scholar 

  • Budelli R, Torres J, Catsigeras E, Enricht H (1991) Two neurons network. I. Integrate and fire pacemaker models. Biol Cybern 66:95–110

    Article  CAS  PubMed  Google Scholar 

  • Castigeras E, Budelli R (1992) Limit cycles of a bineuronal network model. Physica D 56:235–252

    Google Scholar 

  • Cervantes A (1989) Modulación de la descarga repetitiva ante pulsos externos en neuronas del caracol Helix aspersa. Master Thesis, Univesidad Autónoma de Puebla, Mexico

    Google Scholar 

  • Glass L, Mackey MC (1988) From clocks to chaos. Princeton University Press, Princeton

    Google Scholar 

  • Glass L, Pérez R (1982) Fine structure of phase-locking. Phys Rev Lett 48:1772–1775

    Article  Google Scholar 

  • Glass L, Guevara M, Shier A, Pérez R (1983) Bifurcation and chaos in a periodically stimulated cardiac oscillator. Physica 7D:89–103

    Google Scholar 

  • Hardy G, Wright E (1979) An introduction to the theory of numbers. Clarendon Press, Oxford

    Google Scholar 

  • Hartline DK, Gassie DV (1982) Artificially cross-cupled tonic neurons Prodūce alternating bursts. Soc Neurosci Abstr 8:739

    Google Scholar 

  • Heiligenberg WF (1991) Neural nets in electric fish. MIT Press, Cambridge, Mass.

    Google Scholar 

  • Katz AM (1992) Physiology of the heart. Raven, New York

    Google Scholar 

  • Keener JP (1980) Chaotic behavior in piecewise continuous difference equations. Trans Am Math Soc 261:589–604

    Google Scholar 

  • Kirillov AB, Myre CD, Woodward DJ (1993) Bistability, switches and working memory in a two-neuron inhibitory-feedback model. Biol Cybern 68:441–449

    CAS  PubMed  Google Scholar 

  • Knight B (1972) Dynamics of encoding in a population of neurons J Gen Physiol 58:734–766

    Google Scholar 

  • Mirollo RE, Strogatz SH (1990) Synchronization of pulse-coupled biological oscillators. SIAM J Appl Math 50:1645–1662

    Google Scholar 

  • Mulloney B, Perkel D, Budelli R (1981) Motor-pattern production: interaction of chemical and electrical synapses. Brain Res 229:25–33

    Article  CAS  PubMed  Google Scholar 

  • Pérez R, Glass L (1982) Bistability, period doubling bifurcations and chaos in a periodic forced oscillator. Phys Lett 90A:441–443

    Google Scholar 

  • Perez R, Lomnitz-Adler J (1988) Coupled relaxation oscillators and circle maps. Physica 30D:61–82

    Google Scholar 

  • Perkel DH, Mulloney B (1974) Motor pattern production in reciprocally inhibitory neurons exhibiting postsynaptic rebound. Science 145:61–63

    Google Scholar 

  • Peskin CS (1975) Mathematical aspects of heart physiology Courant Institute of Mathematical Sciences, New York

    Google Scholar 

  • Rescigno A, Stein R, Purple R, Poppele R (1970) A neuronal model for the discharge patterns produced by cyclic inputs. Bull Math Biophys 32:337–353

    CAS  PubMed  Google Scholar 

  • Selverston A, Moulins M (1985) Oscillatory neural networks. Ann Rev Physiol 47:29–48

    CAS  Google Scholar 

  • Stein R, French A, Holden A (1972) The frequency response, coherence and information capacity of two neuronal models. Biophys J 12:295–322

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez, L., Budelli, R. Two-neuron networks. Biol. Cybern. 74, 131–137 (1996). https://doi.org/10.1007/BF00204201

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00204201

Keywords

Navigation