Skip to main content
Log in

Linkage disequilibrium relationships among four polymorphisms within the human fibrinogen gene cluster

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

The extent of linkage equilibrium was estimated among four recently characterized human fibrinogen restriction fragment length polymorphisms (RFLPs) using a randomly selected group of 110 individuals from California. Two coding region RFLPs, RsaI and MnlI (FGA codon 312 and FGB codon 448, respectively), and two RFLPs located in the 5′ flanking region of the FGB gene, AluI (HindIII) and HaeIII, were analyzed. Maximum likelihood estimates based on genotypic data indicated that the RsaI polymorphism in the FGA gene was at apparent linkage equilibrium with the MnlI, AluI, and HaeIII sites in the FGB gene, but strong linkage disequilibrium was noted for the MnlI-AluI, MnlI-HaeIII, and AluI-HaeIII RFLP pairs within the latter gene. The discrepancy in disequilibrium relationships among these closely linked RFLPs may indicate a region of increased recombination between the FGA and FGB RFLP loci. The FGA RsaI polymorphism, when used in conjunction with any of the FGB sites examined, will provide more detailed linkage or association data than analyses that would utilize only FGB sites. Effective use of polymorphisms within the fibrinogen locus will aid analysis of the relationships between fibrinogen genotype, plasma fibrinogen levels, and risk of cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonarakis SE, Oettgen P, Chakravarti A, Halloran SL, Hudson RR, Feisee L, Karathanasis SK (1988) DNA polymorphism haplotypes of the human apolipoprotein APOA1-APOC3-APOA4 gene cluster. Hum Genet 80:265–273

    Google Scholar 

  • Aschbacher A, Buetow K, Chung D, Walsh S, Murray J (1985) Linkage disequilibrium of RFLP's associated with α, β, and γ fibrinogen predict gene order on chromosome 4. Am J Hum Genet 37: 186A

  • Baumann RE, Henschen AH (1993) Human fibrinogen polymorphic site analysis by restriction endonuclease digestion and allele-specific polymerase chain reaction amplification: identification of polymorphisms at positions Aα312 and Bβ448. Blood 82:2117–2124

    Google Scholar 

  • Berg K, Kierulf P (1989) DNA polymorphisms at fibrinogen loci and plasma fibrinogen concentration. Clin Genet 36:229–235

    Google Scholar 

  • Buetow KH, Shiang R, Nakamura Y, Brechot C, Evans R, Fukuda M, Schull M, Hulsebos T, Wallner B, Murray JC (1989) A multipoint genetic map and new RFLPs for human chromosome 4. Cytogenet Cell Genet 51:973

    Google Scholar 

  • Chakravarti A, Buetow KH (1985) A strategy for using multiple linked markers for genetic counseling. Am J Hum Genet 37:984–997

    Google Scholar 

  • Chakravarti A, Buetow KH, Antonarakis SE, Waber PG, Boehm CD, Kazazian HH (1984) Nonuniform recombination within the human β-globin gene cluster. Am J Hum Genet 36:1239–1258

    Google Scholar 

  • Chakravarti A, Elbein SC, Permutt MA (1986) Evidence for increased recombination near the human insulin gene: implication for disease association studies. Proc Natl Acad Sci USA 83:1045–1049

    Google Scholar 

  • Chung DW, Que BG, Rixon MW, Mace M Jr, Davie EW (1983) Characterization of complementary deoxyribonucleic acid and genomic deoxyribonucleic acid for the β chain of human fibrinogen. Biochemistry 22:3244–3250

    Google Scholar 

  • Chung DW, Harris JE, Davie EW (1990) Nucleotide sequences of the three genes coding for human fibrinogen. In: Liu CY, Chien S (eds) Fibrinogen, thrombosis, coagulation, and fibrinolysis. Plenum Press, New York, pp 39–47

    Google Scholar 

  • Connor JM, Fowkes FGR, Wood J, Smith FB, Donnan PT, Lowe GDO (1992) Genetic variation at fibrinogen loci and plasma fibrinogen levels. J Med Genet 29:480–482

    Google Scholar 

  • Cook NS, Ubben D (1990) Fibrinogen as a major risk factor in cardiovascular disease. Trends Pharmacol Sci 11:444–451

    Google Scholar 

  • Cox NJ, Bell GI, Xiang K (1988) Linkage disequilibrium in the human insulin/insulin-like growth factor II region of human chromosome 11. Am J Hum Genet 43:495–501

    Google Scholar 

  • Divelbiss J, Shiang R, German J, Moore J, Murray JC, Patil SR (1989) Refinement of the physical location of glycophorin A and β fibrinogen using in situ hybridization and RFLP analysis. Cytogenet Cell Genet 51:991

    Google Scholar 

  • Ernst E (1992) Fibrinogen, a cardiovascular risk factor. Clin Hemorheol 12:805–816

    Google Scholar 

  • Fowkes FGR, Connor JM, Smith FB, Wood J, Donnan PT, Lowe GDO (1992) Fibrinogen genotype and risk of peripheral atherosclerosis. Lancet 339:693–696

    Google Scholar 

  • Henry I, Uzan G, Weil D, Nicolas H, Kaplan JC, Marguerie C, Kahn A, Junien C (1984) The genes coding for Aα-, Bβ-, and γ-chains of fibrinogen map to 4q2. Am J Hum Genet 36:760–768

    Google Scholar 

  • Henschen AH (1993) Human fibrinogen: structural variants and functional sites. Thromb Haemost 70:42–47

    Google Scholar 

  • Henschen AH, Baumann R (1991) Identification of polymorphic sites in the human fibrinogen chains using the polymerase chain reaction. Thromb Haemost 65:901

    Google Scholar 

  • Henschen AH, McDonagh J (1986) Fibrinogen, fibrin and factor XIII. In: Zwaal RFA, Hemker HC (eds) Blood coagulation. Elsevier, Amsterdam, pp 171–241

    Google Scholar 

  • Higuchi R (1989) Simple and rapid preparation of samples for PCR. In: Erlich HA (ed) PCR technology: principles and applications for DNA amplification. Stockton Press, New York, pp 31–38

    Google Scholar 

  • Hill WG (1974) Estimation of linkage disequilibrium in randomly mating populations. Heredity 33:229–239

    Google Scholar 

  • Humphries SE, Imam AMA, Robbins TP, Cook M, Carritt B, Ingle C, Williamson R (1984) The identification of a DNA polymorphism of the α fibrinogen gene, and the regional assignment of the human fibrinogen genes to 4q26-qter. Hum Genet 68:148–153

    Google Scholar 

  • Humphries SE, Cook M, Dubowitz M, Stirling Y, Meade TW (1987) Role of genetic variation at the fibrinogen locus in determination of plasma fibrinogen concentrations. Lancet I:1452–1455

    Google Scholar 

  • Kannel WB, Wolf PA, Castelli WP, D'Agostino RB (1987) Fibrinogen and risk of cardiovascular disease. JAMA 258:1183–1186

    Google Scholar 

  • Kant JA, Lord ST, Crabtree GR (1983) Partial mRNA sequences for human Aα, Bβ, and γ fibrinogen chains: evolutionary and functional implications. Proc Natl Acad Sci USA 80:3953–3957

    Google Scholar 

  • Kant JA, Fornace AJ Jr, Saxe D, Simon Ml, McBride OW, Crabtree GR (1985) Evolution and organization of the fibrinogen locus on chromosome 4: gene duplication accompanied by transposition and inversion. Proc Natl Acad Sci USA 82:2344–2348

    Google Scholar 

  • Meade TW, Mellows S, Brozovic M, Miller GJ, Chakrabarti RR, North WRS, Haines AP, Stirling Y, Imeson JD, Thompson SG (1986) Haemostatic function and ischaemic heart disease: principal results of the Northwick Park heart study. Lancet II:533–537

    Google Scholar 

  • Murray JC, Buetow K, Chung D, Aschbacher A (1985) Linkage disequilibrium of RFLP's at the beta fibrinogen (FGB) and amma fibrinogen (FGG) loci on chromosome 4. Cytogenet Cell Genet 40:707–708

    Google Scholar 

  • Olaisen B, Teisberg P, Gedde-Dahl T Jr (1982) Fibrinogen γ chain locus is on chromosome 4 in man. Hum Genet 61:24–26

    Google Scholar 

  • Rixon MW, Chan WY, Davie EW, Chung DW (1983) Characterization of a complementary deoxyribonucleic acid coding for the α chain of human fibrinogen. Biochemistry 22:3237–3244

    Google Scholar 

  • Rixon MW, Chung DW, Davie EW (1985) Nucleotide sequence of the gene for the γ chain of human fibrinogen. Biochemistry 24:2077–2086

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Google Scholar 

  • Snowden C, Houlston R, Laker MF, Kesteven P, Alberti KGMM, Humphries SE (1992) Plasma fibrinogen levels and fibrinogen genotype in non-insulin dependent diabetics. Dis Markers 10:159–168

    Google Scholar 

  • Thomas AE, Green FR, Kelleher CH, Wilkes HC, Brennan PJ, Meade TW, Humphries SE (1991 a) Variation in the promoter region of the β fibrinogen gene is associated with plasma fibrinogen levels in smokers and non-smokers. Thromb Haemost 65:487–490

    Google Scholar 

  • Thomas A, Green F, Cruickshank K, Humphries S (1991 b) The HaeIII and HindIII polymorphisms of the β fibrinogen gene: racial differences in frequency and association. Thromb Haemost 65:897

    Google Scholar 

  • Thompson EA, Deeb S, Walker D, Motulsky AG (1988) The detection of linkage disequilibrium between closely linked markers: RFLPs at the AI-CIII apolipoprotein genes. Am J Hum Genet 42:113–124

    Google Scholar 

  • Weir BS (1990) Genetic data analysis: methods for discrete population genetic data. Sinauer Associates, Sunderland, pp 71–114

    Google Scholar 

  • Weir BS, Cockerham CC (1979) Estimation of linkage disequilibrium in randomly mating populations. Heredity 42:105–111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumann, R.E., Henschen, A.H. Linkage disequilibrium relationships among four polymorphisms within the human fibrinogen gene cluster. Hum Genet 94, 165–170 (1994). https://doi.org/10.1007/BF00202863

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202863

Keywords

Navigation