Skip to main content
Log in

Heterogeneity in the severity of cystic fibrosis and the role of CFTR gene mutations

  • Review Article
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Cystic fibrosis is a common, fatal disorder caused by abnormalities in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR encodes a chloride channel that regulates secretion in many exocrine tissues. The presentation of cystic fibrosis is highly variable as measured by the age of onset of disease, the presence of pancreatic insufficiency, or the progression of lung disease. Over 400 mutations in the CFTR gene have been described in cystic fibrosis patients and considerable effort has focused on the correlation between specific mutations and genotypes and clinical characteristics. Individual tissues display variation in their sensitivity to CFTR mutations. The vas deferens is functionally disrupted in nearly all males, whereas mild and severe pancreatic involvement is determined by the patient's genotype. The severity of pulmonary disease is poorly correlated with genotype, suggesting that there are other important genetic and/or environmental factors that contribute to lung infections and the subsequent disruption of lung function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen DH (1938) Cystic fibrosis of the pancreas and its relation to celiac disease. Am J Dis Child 56:344–399

    Google Scholar 

  • Anderson MP (1991) Calcium and cAMP activate different chloride channels in the apical membrane of normal and cystic fibrosis epithelia. Proc Natl Acad Sci USA 88:6003–6007

    CAS  PubMed  Google Scholar 

  • Anguiano A, Oates RD, Amos JA, Dean M, Gerrard B, Stewart C, Maher TA, White MB, Milunsky A (1992) Congenital bilateral absence of the vas deferens. A primary genital form of cystic fibrosis. JAMA 267:1794–1797

    Google Scholar 

  • Boat TF, Welsh MJ, Beaudet AL (1989) Cystic fibrosis. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease, 6th edn. McGraw Hill, New York, pp 2649–2680

    Google Scholar 

  • Cheng SH, Gregory RJ, Marshall J, Paul S, Souza DW, White GA, O'Riordan CR, Smith AE (1990) Defective intracaellular transport and processing is the molecular basis for most cystic fibrosis. Cell 63:827–834

    Google Scholar 

  • Clarke LL, Grubb BR, Gabriel SE, Smithies O, Koller BH, Boucher RC (1992) Defective epithelial chloride transport in a gene-targeted mouse model of cystic fibrosis. Science 257:1125–1127

    Google Scholar 

  • Corey M, Durie P, Moore D, Forstner G, Levison H (1989) Familial Concordane of pancreatic function in cystic fibrosis. J Pediatr 115:274–277

    Google Scholar 

  • Cutting GR, Kasch LM, Rosenstein BJ, Tsui L-C, Kazazian HH, Antonarakis SE (1990) Two patients with cystic fibrosis, nonsense mutations in each cystic fibrosis gene, and mild pulmonary disease. N Engl J Med 323:1685–1689

    Google Scholar 

  • Cystic Fibrosis Genetic Analysis Consortium (1990) Worldwide survey of the ΔF508 mutation: report from the Cystic Fibrosis Genetic Analysis Consortium. Am J Hum Genet 47:354–359

    Google Scholar 

  • Dean M, White MB, Amos J, Gerrard B, Stewart C, Khaw K-T, Leppert M (1990) Multiple mutations in highly conserved residues are found in mildly affected cystic fibrosis patients. Cell 61:863–870

    Google Scholar 

  • Denning GM, Anderson MP, Amara JF, Marshall J, Smith AE, Welsh MJ (1992) Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358:761–764

    Google Scholar 

  • Devoto M, De Benedetti L, Seia M, Piceni Sereni L, Ferrari M, Bonduelle ML, Malfroot A, Lissens W, Balassopoulou A, Adam G, Loukopoulos D, Cochaux P, Vassart G, Szibor R, Hein J, Grade K, Berger W, Wainwright B, Romeo G (1989) Haplotypes in cystic fibrosis patients with or without pancreatic sufficiency from four European populations. Genomics 5: 894–898

    Google Scholar 

  • Dumur V, Gervais R, Rigot J-M, Lafitte J-J, Manouvriers P, Biserte J, Mazeman E, Roussel P (1990) Abnormal distribution of CF (delta)F508 allele in azospermic men with congenital aplasia of epididymis and vas deferens. Lancet 336:512

    Google Scholar 

  • Durie P, Corey M, Kristidis P, Markiewicz D, Zielenski J, Tsui L-C (1992) The range of exocrine pancreatic disease and specific CF gene mutations. Pediatr Pulmonol 8 [Suppl]:240

    Google Scholar 

  • Gervais R, Dumur V, Rigot J-M, Lafitte J-L, Roussel P, Claustres M, Demaille J (1993) High frequency of the R117H cystic fibrosis mutation in patients with congenital absence of the vas deferens. N Engl J Med 328:446–447

    Google Scholar 

  • Gregory RJ, Rich DP, Cheng SH, Souza DW, Paul S, Manavalan P, Anderson MP, Welsh MJ, Smith AE (1991) Maturation and function of cystic fibrosis transmembrane conductance regulator variants bearing mutations in putative nucleotide-binding domains 1 and 2. Mol Cell Biol 11:3886–3893

    Google Scholar 

  • Hamosh A, Trapnell BC, Zeitlin PL (1991) Severe deficiency of cystic fibrosis transmembrane conductance regulator messenger RNA carrying nonsense mutations R553X and W1316X in respiratory epithelial cells of patients with cystic fibrosis. J Clin Invest 88:1880–1885

    Google Scholar 

  • Hodson ME (1992) Diabetes mellitus and cystic fibrosis. Baillieres Clin Endocrinol Metab 6:797–805

    Google Scholar 

  • Johansén HK, Nir M, Hoiby N, Koch C, Schwartz M (1991) Severity of cystic fibrosis in patients homozygous and heterozygous for ΔF508 mutation. Lancet 337:631–634

    Google Scholar 

  • Kaplan E, Scwachman H, Perlmutter AD, Rule A, Khaw K-T, Holscaw DS (1968) Reproductive failure in male with cystic fibrosis. N Engl J Med 279:65–69

    Google Scholar 

  • Kerem B-S, Buchanan JA, Durie P, Corey ML, Levison H, Rommens JM, Buchwald M, Tsui L-C (1989a) DNA marker haplotype association with pancreatic sufficiency in cystic fibrosis. Am J Hum Genet 44:827–834

    Google Scholar 

  • Kerem B-S, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui L-C (1989b) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080

    Google Scholar 

  • Kerem E, Corey M, Kerem B-S, Rommens J, Markiewicz D, Levison H, Tsui L-C, Durie P (1990) The relation between genotype and phenotype in cystic fibrosis: analysis of the most common mutation (ΔF508). N Engl J Med 323:1517–1522

    Google Scholar 

  • Khalil I, d'Auriol L, Gobet M, Morin L, Lepage V, Deschamps I, Park MS, Degos L, Galibert F, Hors J (1990) A combination of HLA-DQβ Asp57-negative and HLA DQα Arg52 confers susceptibility to insulin-dependent diabetes mellitus. J Clin Invest 85:1315–1319

    Google Scholar 

  • Kristidis P, Bozon D, Corey M, Markiewicz D, Rommens J, Tsui L-C, Durie P (1992) Genetic determination of pancreatic function in cystic fibrosis. Am J Hum Genet 50:1178–1184

    Google Scholar 

  • Kubesch P, Dörk T, Wulbrand U, Kälin N, Neumann T, Wulf B, Geerlings H, Weibbrodt H, Hardt H von der, Tümmler B (1993) Genetic determinants of airways' colonisation with Pseudomonas aeruginosa in cystic fibrosis. Lancet 341:189–193

    Google Scholar 

  • Lanng S, Schartz M, Thorsteinsson B, Koch C (1991) Endocrine and exocrine pancreatic function and the ΔF508 mutation in cystic fibrosis. Clin Genet 40:345–348

    Google Scholar 

  • Lanng S, Thorsteinsson B, Pociot F, Marshall MO, Madsen HO, Schwartz M, Nerup J, Koch C (1993) Diabetes mellitus in cystic fibrosis: genetic and immunological markers. Acta Paediatr 82:150–154

    Google Scholar 

  • Miyazaki T, Uno M, Uehira M, Kikutani H, Kishimoto T, Kimoto M, Nishimoto H, Miyazaki J-I, Yamamura K-I (1990) Direct evidence for the contribution of the unique I-ANOD to the development of insulitis in non-obese diabetic mice. Nature 345:722–729

    Google Scholar 

  • Riordan JR, Rommens JM, Kerem B-S, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou J-L, Drumm ML, Iannuzzi MC, Collins FS, Tsui L-C (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    CAS  PubMed  Google Scholar 

  • Rommens JM, Iannuzzi MC, Kerem B-S, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N, Zsiga M, Buchwald M, Riordan JR, Tsui L-C, Collins FS (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245:1059–1065

    Google Scholar 

  • Rosenstein BJ, Eigen H (1991) Risks of alternate-day prednisone in patients with cystic fibrosis. Pediatrics 87:245–246

    Google Scholar 

  • Santamaria F, Salvatore D, Castiglione O, Raia V, Ritis G de, Sebastio G (1992) Lung involvement, the ΔF508 mutation and DNA haplotype analysis in cystic fibrosis. Hum Genet 88:639–641

    Google Scholar 

  • Santis G, Osborne L, Knight RA, Hosdon ME (1990a) Independent genetic determinants of pancreatic and pulmonary status in cystic fibrosis. Lancet 336:1081–1084

    Google Scholar 

  • Santis G, Osborne L, Knight RA, Hodson ME (1990b) Linked marker haplotypes and ΔF508 mutation in adults with mild pulmonary disease and cystic fibrosis. Lancet 335:1426–1429

    Google Scholar 

  • Santis G, Osborne L, Knight R, Hodson ME, Ramsay M (1990b) Genetic influences on pulmonary severity in cystic fibrosis. Lancet I:294

    Google Scholar 

  • Schellen TMCM, van Stratten A (1980) Autosomal recessive hereditary congenital aplasia of the vasa deferentia in four siblings. Fertil Steril 35:401–404

    Google Scholar 

  • Sheppard DN, Rich DP, Ostedgaard LS, Gregory RJ, Smith AE, Welsh MJ (1993) Mutations in CFTR associated with mild-disease-form C channels with altered pore properties. Nature 362:160–164

    Google Scholar 

  • Shoshani T, Augarten A, Gazit E, Bashan N, Yahav Y, Rivlin Y, Tal A, Seret H, Yaar L, Kerem E, Kerem B-S (1992) Association of a nonsense mutation (W1282X), the most common mutation in the Ashkenazi Jewish cystic fibrosis patients in Israel, with presentation of severe disease. Am J Hum Genet 50: 222–228

    Google Scholar 

  • Snouwaert JN, Brigman KK, Latour AM, Malouf NN, Boucher RC, Smithies O, Koller BH (1992) An animal model for cystic fibrosis made by gene targeting. Science 257:1083–1088

    Google Scholar 

  • Thomson G (1984) HLA DR antigens and susceptibility to insulin-dependent diabetes mellitus. Am J Hum Genet 36:1309–1317

    Google Scholar 

  • Todd JA (1990) Genetic control of autoimmunity in type 1 diabetes. Immunol Today 11:122–130

    Google Scholar 

  • Todd JA, Bell JI, McDevitt HO (1987) 368–01 gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 329:599–604

    Google Scholar 

  • Tsui L-C (1992) The spectrum of cystic fibrosis mutations. Trends Genet 8:392–398

    Google Scholar 

  • Valverde MA, Diaz M, Sepulveda FV, Gill DR, Hyde SC, Higgins CF (1992) Volume-regulated chloride channels associated with the human multidrug-resistance P-glycoprotein. Nature 355: 830–833

    Google Scholar 

  • Weatherall DJ, Pressley L, Wood WG, Higgs DR, Clegg JB (1981) Molecular basis for mild forms of homozygous beta-thalassaemia. Lancet I:527–529

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dean, M., Santis, G. Heterogeneity in the severity of cystic fibrosis and the role of CFTR gene mutations. Hum Genet 93, 364–368 (1994). https://doi.org/10.1007/BF00201659

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00201659

Keywords

Navigation