Skip to main content

Cystic Fibrosis

  • Chapter
  • First Online:
Imaging in Pediatric Pulmonology
  • 865 Accesses

Abstract

Cystic fibrosis is a life-limiting hereditary disorder of the cystic fibrosis transmembrane conductance regulator (CFTR) characterized by recurrent sinopulmonary infections and progressive obstructive lung disease. There are also common manifestations affecting the gastrointestinal, hepatobiliary, endocrine, and reproductive systems. It is most common among non-Hispanic whites of Northern European descent, with a carrier frequency of 1/25. The incidence varies according to population but is estimated at approximately 1 in 2500 to 3500 white newborns. Clinical findings vary according to age, though common features include recurrent sinopulmonary infections and failure to thrive secondary to pancreatic exocrine insufficiency. Therapeutic strategies are focused on preserving lung function, optimizing nutritional status, and managing manifestations of extrapulmonary disease. Astounding progress over the past decade has resulted in mutation-specific pharmacologic interventions, and optimism remains for the future development of medications to treat all patients. Since the initial identification of this autosomal recessive disorder 80 years ago, there has been a dramatic increase in the median age of survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riordan JR, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245(4922):1066–73.

    Article  CAS  PubMed  Google Scholar 

  2. Kerem B, et al. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989;245(4922):1073–80.

    Article  CAS  PubMed  Google Scholar 

  3. Rommens JM, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 1989;245(4922):1059–65.

    Article  CAS  PubMed  Google Scholar 

  4. Consortium, C.F.G.A. Cystic fibrosis mutation database. 2010. 27 Feb 2018. Available from: http://www.genet.sickkids.on.ca/app.

  5. The Clinical and Functional TRanslation of CFTR (CFTR2). 2011. Available from: http://cftr2.org.

  6. Sosnay PR, Cutting GR. Interpretation of genetic variants. Thorax. 2014;69(3):295–7.

    Article  PubMed  Google Scholar 

  7. Cutting GR. Modifier genes in Mendelian disorders: the example of cystic fibrosis. Ann N Y Acad Sci. 2010;1214:57–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ong T, et al. Socioeconomic status, smoke exposure, and health outcomes in young children with cystic fibrosis. Pediatrics. 2017;139(2):e20162730.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Oates GR, Schechter MS. Socioeconomic status and health outcomes: cystic fibrosis as a model. Expert Rev Respir Med. 2016;10(9):967–77.

    Article  CAS  PubMed  Google Scholar 

  10. Matsui H, et al. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell. 1998;95(7):1005–15.

    Article  CAS  PubMed  Google Scholar 

  11. Sheppard DN, Welsh MJ. Structure and function of the CFTR chloride channel. Physiol Rev. 1999;79(1 Suppl):S23–45.

    Article  CAS  PubMed  Google Scholar 

  12. Hanrahan JW, Wioland MA. Revisiting cystic fibrosis transmembrane conductance regulator structure and function. Proc Am Thorac Soc. 2004;1(1):17–21.

    Article  CAS  PubMed  Google Scholar 

  13. Rauh R, Hoerner C, Korbmacher C. δβγ-ENaC is inhibited by CFTR but stimulated by cAMP in Xenopus laevis oocytes. Am J Physiol Lung Cell Mol Physiol. 2017;312(2):L277–87.

    Article  PubMed  Google Scholar 

  14. Stanke F, et al. The TNFalpha receptor TNFRSF1A and genes encoding the amiloride-sensitive sodium channel ENaC as modulators in cystic fibrosis. Hum Genet. 2006;119(3):331–43.

    Article  CAS  PubMed  Google Scholar 

  15. Pilewski JM, Frizzell RA. Role of CFTR in airway disease. Physiol Rev. 1999;79(1 Suppl):S215–55.

    Article  CAS  PubMed  Google Scholar 

  16. Pezzulo AA, et al. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature. 2012;487(7405):109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coakley RD, et al. Abnormal surface liquid pH regulation by cultured cystic fibrosis bronchial epithelium. Proc Natl Acad Sci U S A. 2003;100(26):16083–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Keiser NW, et al. Defective innate immunity and hyperinflammation in newborn cystic fibrosis transmembrane conductance regulator-knockout ferret lungs. Am J Respir Cell Mol Biol. 2015;52(6):683–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Verhaeghe C, et al. Early inflammation in the airways of a cystic fibrosis foetus. J Cyst Fibros. 2007;6(4):304–8.

    Article  CAS  PubMed  Google Scholar 

  20. Cohen-Cymberknoh M, et al. Airway inflammation in cystic fibrosis: molecular mechanisms and clinical implications. Thorax. 2013;68(12):1157–62.

    Article  PubMed  Google Scholar 

  21. Cutting GR. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet. 2015;16(1):45–56.

    Article  CAS  PubMed  Google Scholar 

  22. Agrawal PB, et al. The epithelial sodium channel is a modifier of the long-term nonprogressive phenotype associated with F508del CFTR mutations. Am J Respir Cell Mol Biol. 2017;57(6):711–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Farrell PM, et al. Diagnosis of cystic fibrosis: consensus guidelines from the Cystic Fibrosis Foundation. J Pediatr. 2017;181S:S4–S15.e1.

    Article  PubMed  Google Scholar 

  24. Monaghan KG, Feldman GL. The risk of cystic fibrosis with prenatally detected echogenic bowel in an ethnically and racially diverse North American population. Prenat Diagn. 1999;19(7):604–9.

    Article  CAS  PubMed  Google Scholar 

  25. Sosnay PR, et al. Diagnosis of cystic fibrosis in nonscreened populations. J Pediatr. 2017;181S:S52–S57.e2.

    Article  PubMed  Google Scholar 

  26. Adam RJ, et al. Air trapping and airflow obstruction in newborn cystic fibrosis piglets. Am J Respir Crit Care Med. 2013;188(12):1434–41.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mall MA, et al. Early detection and sensitive monitoring of CF lung disease: prospects of improved and safer imaging. Pediatr Pulmonol. 2016;51(S44):S49–60.

    Article  PubMed  Google Scholar 

  28. Cleveland RH, et al. Cystic fibrosis: predictors of accelerated decline and distribution of disease in 230 patients. AJR Am J Roentgenol. 1998;171(5):1311–5.

    Article  CAS  PubMed  Google Scholar 

  29. Slattery DM, et al. CF: an X-ray database to assess effect of aerosolized tobramycin. Pediatr Pulmonol. 2004;38(1):23–30.

    Article  PubMed  Google Scholar 

  30. Bhalla M, et al. Cystic fibrosis: scoring system with thin-section CT. Radiology. 1991;179(3):783–8.

    Article  CAS  PubMed  Google Scholar 

  31. Amaxopoulou C, et al. Structural and perfusion magnetic resonance imaging of the lung in cystic fibrosis. Pediatr Radiol. 2018;48(2):165–75.

    Article  PubMed  Google Scholar 

  32. Mogayzel PJ Jr, et al. Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health. Am J Respir Crit Care Med. 2013;187(7):680–9.

    Article  PubMed  Google Scholar 

  33. Ramsey BW, et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med. 2011;365(18):1663–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Accurso FJ, et al. Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N Engl J Med. 2010;363(21):1991–2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Davies JC, et al. Safety, pharmacokinetics, and pharmacodynamics of ivacaftor in patients aged 2–5 years with cystic fibrosis and a CFTR gating mutation (KIWI): an open-label, single-arm study. Lancet Respir Med. 2016;4(2):107–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McGarry ME, et al. In vivo and in vitro ivacaftor response in cystic fibrosis patients with residual CFTR function: N-of-1 studies. Pediatr Pulmonol. 2017;52(4):472–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Milla CE, et al. Lumacaftor/ivacaftor in patients aged 6–11 years with cystic fibrosis and homozygous for F508del-CFTR. Am J Respir Crit Care Med. 2017;195(7):912–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Konstan MW, et al. Assessment of safety and efficacy of long-term treatment with combination lumacaftor and ivacaftor therapy in patients with cystic fibrosis homozygous for the F508del-CFTR mutation (PROGRESS): a phase 3, extension study. Lancet Respir Med. 2017;5(2):107–18.

    Article  CAS  PubMed  Google Scholar 

  39. Ratjen F, et al. Efficacy and safety of lumacaftor and ivacaftor in patients aged 6–11 years with cystic fibrosis homozygous for F508del-CFTR: a randomised, placebo-controlled phase 3 trial. Lancet Respir Med. 2017;5(7):557–67.

    Article  CAS  PubMed  Google Scholar 

  40. Rowe SM, et al. Tezacaftor-ivacaftor in residual-function heterozygotes with cystic fibrosis. N Engl J Med. 2017;377(21):2024–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wainwright CE, et al. Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med. 2015;373(3):220–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Quon BS, Rowe SM. New and emerging targeted therapies for cystic fibrosis. BMJ. 2016;352:i859.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Yen EH, Quinton H, Borowitz D. Better nutritional status in early childhood is associated with improved clinical outcomes and survival in patients with cystic fibrosis. J Pediatr. 2013;162(3):530–535.e1.

    Article  PubMed  Google Scholar 

  44. Stephenson AL, et al. Survival comparison of patients with cystic fibrosis in Canada and the United States: a population-based cohort study. Ann Intern Med. 2017;166(8):537–46.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Snell G, et al. The evolution of lung transplantation for cystic fibrosis: a 2017 update. J Cyst Fibros. 2017;16(5):553–64.

    Article  PubMed  Google Scholar 

  46. Wang EE, et al. Association of respiratory viral infections with pulmonary deterioration in patients with cystic fibrosis. N Engl J Med. 1984;311(26):1653–8.

    Article  CAS  PubMed  Google Scholar 

  47. Abman SH, et al. Role of respiratory syncytial virus in early hospitalizations for respiratory distress of young infants with cystic fibrosis. J Pediatr. 1988;113(5):826–30.

    Article  CAS  PubMed  Google Scholar 

  48. Smyth AR, et al. Effect of respiratory virus infections including rhinovirus on clinical status in cystic fibrosis. Arch Dis Child. 1995;73(2):117–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wark PA, et al. Viral infections trigger exacerbations of cystic fibrosis in adults and children. Eur Respir J. 2012;40(2):510–2.

    Article  PubMed  Google Scholar 

  50. Asner S, et al. Role of respiratory viruses in pulmonary exacerbations in children with cystic fibrosis. J Cyst Fibros. 2012;11(5):433–9.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wat D, Doull I. Respiratory virus infections in cystic fibrosis. Paediatr Respir Rev. 2003;4(3):172–7.

    Article  PubMed  Google Scholar 

  52. Ramsey BW, et al. The effect of respiratory viral infections on patients with cystic fibrosis. Am J Dis Child. 1989;143(6):662–8.

    CAS  PubMed  Google Scholar 

  53. Hiatt PW, et al. Effects of viral lower respiratory tract infection on lung function in infants with cystic fibrosis. Pediatrics. 1999;103(3):619–26.

    Article  CAS  PubMed  Google Scholar 

  54. Petersen NT, et al. Respiratory infections in cystic fibrosis patients caused by virus, chlamydia and mycoplasma--possible synergism with Pseudomonas aeruginosa. Acta Paediatr Scand. 1981;70(5):623–8.

    Article  CAS  PubMed  Google Scholar 

  55. Collinson J, et al. Effects of upper respiratory tract infections in patients with cystic fibrosis. Thorax. 1996;51(11):1115–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Abman SH, et al. Early bacteriologic, immunologic, and clinical courses of young infants with cystic fibrosis identified by neonatal screening. J Pediatr. 1991;119(2):211–7.

    Article  CAS  PubMed  Google Scholar 

  57. Kua KP, Lee SWH. Systematic review of the safety and efficacy of palivizumab among infants and young children with cystic fibrosis. Pharmacotherapy. 2017;37(6):755–69.

    Article  CAS  PubMed  Google Scholar 

  58. Pribble CG, et al. Clinical manifestations of exacerbations of cystic fibrosis associated with nonbacterial infections. J Pediatr. 1990;117(2 Pt 1):200–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Conway SP, Simmonds EJ, Littlewood JM. Acute severe deterioration in cystic fibrosis associated with influenza A virus infection. Thorax. 1992;47(2):112–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ortiz JR, et al. Influenza-associated cystic fibrosis pulmonary exacerbations. Chest. 2010;137(4):852–60.

    Article  PubMed  Google Scholar 

  61. Dharmaraj P, Smyth RL. Vaccines for preventing influenza in people with cystic fibrosis. Cochrane Database Syst Rev. 2014;3:CD001753.

    Google Scholar 

  62. Armstrong DS, et al. Lower airway inflammation in infants and young children with cystic fibrosis. Am J Respir Crit Care Med. 1997;156(4 Pt 1):1197–204.

    Article  CAS  PubMed  Google Scholar 

  63. Rosenfeld M, et al. Early pulmonary infection, inflammation, and clinical outcomes in infants with cystic fibrosis. Pediatr Pulmonol. 2001;32(5):356–66.

    Article  CAS  PubMed  Google Scholar 

  64. Cantin AM, et al. Inflammation in cystic fibrosis lung disease: pathogenesis and therapy. J Cyst Fibros. 2015;14(4):419–30.

    Article  CAS  PubMed  Google Scholar 

  65. Balough K, et al. The relationship between infection and inflammation in the early stages of lung disease from cystic fibrosis. Pediatr Pulmonol. 1995;20(2):63–70.

    Article  CAS  PubMed  Google Scholar 

  66. Bartlett JA, et al. Newborn cystic fibrosis pigs have a blunted early response to an inflammatory stimulus. Am J Respir Crit Care Med. 2016;194(7):845–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chmiel JF, Berger M, Konstan MW. The role of inflammation in the pathophysiology of CF lung disease. Clin Rev Allergy Immunol. 2002;23(1):5–27.

    Article  PubMed  Google Scholar 

  68. Bradley J, McAlister O, Elborn S. Pulmonary function, inflammation, exercise capacity and quality of life in cystic fibrosis. Eur Respir J. 2001;17(4):712–5.

    Article  CAS  PubMed  Google Scholar 

  69. Rosenfeld M, et al. Defining a pulmonary exacerbation in cystic fibrosis. J Pediatr. 2001;139(3):359–65.

    Article  CAS  PubMed  Google Scholar 

  70. Bilton D, et al. Pulmonary exacerbation: towards a definition for use in clinical trials. Report from the EuroCareCF Working Group on outcome parameters in clinical trials. J Cyst Fibros. 2011;10(Suppl 2):S79–81.

    Article  PubMed  Google Scholar 

  71. Cleveland RH, et al. Cystic fibrosis genotype and assessing rates of decline in pulmonary status. Radiology. 2009;253(3):813–21.

    Article  PubMed  Google Scholar 

  72. Ronchetti K, et al. The CF-Sputum Induction Trial (CF-SpIT) to assess lower airway bacterial sampling in young children with cystic fibrosis: a prospective internally controlled interventional trial. Lancet Respir Med. 2018;6(6):461–71.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Flume PA, et al. Cystic fibrosis pulmonary guidelines: treatment of pulmonary exacerbations. Am J Respir Crit Care Med. 2009;180(9):802–8.

    Article  PubMed  Google Scholar 

  74. Bhatt JM. Treatment of pulmonary exacerbations in cystic fibrosis. Eur Respir Rev. 2013;22(129):205–16.

    Article  PubMed  Google Scholar 

  75. Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. Clin Microbiol Rev. 2002;15(2):194–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Demko CA, Byard PJ, Davis PB. Gender differences in cystic fibrosis: Pseudomonas aeruginosa infection. J Clin Epidemiol. 1995;48(8):1041–9.

    Article  CAS  PubMed  Google Scholar 

  77. Parad RB, et al. Pulmonary outcome in cystic fibrosis is influenced primarily by mucoid Pseudomonas aeruginosa infection and immune status and only modestly by genotype. Infect Immun. 1999;67(9):4744–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Watt AP, et al. Neutrophil cell death, activation and bacterial infection in cystic fibrosis. Thorax. 2005;60(8):659–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mogayzel PJ Jr, et al. Cystic Fibrosis Foundation pulmonary guideline. Pharmacologic approaches to prevention and eradication of initial Pseudomonas aeruginosa infection. Ann Am Thorac Soc. 2014;11(10):1640–50.

    Article  PubMed  Google Scholar 

  80. Langton Hewer SC, Smyth AR. Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis. Cochrane Database Syst Rev. 2017;4:CD004197.

    PubMed  Google Scholar 

  81. Ratjen F, et al. Treatment of early Pseudomonas aeruginosa infection in patients with cystic fibrosis: the ELITE trial. Thorax. 2010;65(4):286–91.

    Article  PubMed  Google Scholar 

  82. Treggiari MM, et al. Comparative efficacy and safety of 4 randomized regimens to treat early Pseudomonas aeruginosa infection in children with cystic fibrosis. Arch Pediatr Adolesc Med. 2011;165(9):847–56.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Emerson J, et al. Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol. 2002;34(2):91–100.

    Article  PubMed  Google Scholar 

  84. Smyth AR, Rosenfeld M. Prophylactic anti-staphylococcal antibiotics for cystic fibrosis. Cochrane Database Syst Rev. 2017;4:CD001912.

    PubMed  Google Scholar 

  85. Foundation CF. Patient registry 2016 annual data report. Cystic Fibrosis Foundation, Bethesda, MD.

    Google Scholar 

  86. Sawicki GS, Rasouliyan L, Ren CL. The impact of MRSA on lung function in patients with cystic fibrosis. Am J Respir Crit Care Med. 2009;179(8):734–5; author reply 735.

    Article  PubMed  Google Scholar 

  87. Ren CL, et al. Presence of methicillin resistant Staphylococcus aureus in respiratory cultures from cystic fibrosis patients is associated with lower lung function. Pediatr Pulmonol. 2007;42(6):513–8.

    Article  PubMed  Google Scholar 

  88. Muhlebach MS, et al. Treatment intensity and characteristics of MRSA infection in CF. J Cyst Fibros. 2011;10(3):201–6.

    Article  PubMed  Google Scholar 

  89. Dasenbrook EC, et al. Association between respiratory tract methicillin-resistant Staphylococcus aureus and survival in cystic fibrosis. JAMA. 2010;303(23):2386–92.

    Article  CAS  PubMed  Google Scholar 

  90. Muhlebach MS, et al. Microbiological efficacy of early MRSA treatment in cystic fibrosis in a randomised controlled trial. Thorax. 2017;72(4):318–26.

    Article  PubMed  Google Scholar 

  91. Kappler M, et al. Eradication of methicillin resistant Staphylococcus aureus detected for the first time in cystic fibrosis: a single center observational study. Pediatr Pulmonol. 2016;51(10):1010–9.

    Article  PubMed  Google Scholar 

  92. Vandamme P, Dawyndt P. Classification and identification of the Burkholderia cepacia complex: past, present and future. Syst Appl Microbiol. 2011;34(2):87–95.

    Article  CAS  PubMed  Google Scholar 

  93. Henry DA, et al. Identification of Burkholderia cepacia isolates from patients with cystic fibrosis and use of a simple new selective medium. J Clin Microbiol. 1997;35(3):614–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. McMenamin JD, et al. Misidentification of Burkholderia cepacia in US cystic fibrosis treatment centers: an analysis of 1,051 recent sputum isolates. Chest. 2000;117(6):1661–5.

    Article  CAS  PubMed  Google Scholar 

  95. Jones AM, et al. Burkholderia cenocepacia and Burkholderia multivorans: influence on survival in cystic fibrosis. Thorax. 2004;59(11):948–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Courtney JM, et al. Clinical outcome of Burkholderia cepacia complex infection in cystic fibrosis adults. J Cyst Fibros. 2004;3(2):93–8.

    Article  CAS  PubMed  Google Scholar 

  97. De Soyza A, et al. Lung transplantation for patients with cystic fibrosis and Burkholderia cepacia complex infection: a single-center experience. J Heart Lung Transplant. 2010;29(12):1395–404.

    Article  PubMed  Google Scholar 

  98. De Soyza A, et al. Burkholderia cepacia complex genomovars and pulmonary transplantation outcomes in patients with cystic fibrosis. Lancet. 2001;358(9295):1780–1.

    Article  PubMed  Google Scholar 

  99. Meachery G, et al. Outcomes of lung transplantation for cystic fibrosis in a large UK cohort. Thorax. 2008;63(8):725–31.

    Article  CAS  PubMed  Google Scholar 

  100. Adjemian J, Olivier KN, Prevots DR. Epidemiology of pulmonary nontuberculous mycobacterial sputum positivity in patients with cystic fibrosis in the United States, 2010–2014. Ann Am Thorac Soc. 2018;15(7):817–26.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Leung JM, Olivier KN. Nontuberculous mycobacteria in patients with cystic fibrosis. Semin Respir Crit Care Med. 2013;34(1):124–34.

    Article  PubMed  Google Scholar 

  102. Esther CR Jr, et al. Chronic Mycobacterium abscessus infection and lung function decline in cystic fibrosis. J Cyst Fibros. 2010;9(2):117–23.

    Article  PubMed  Google Scholar 

  103. Griffith DE, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175(4):367–416.

    Article  CAS  PubMed  Google Scholar 

  104. Floto RA, et al. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis: executive summary. Thorax. 2016;71(1):88–90.

    Article  PubMed  Google Scholar 

  105. Mussaffi H, et al. Nontuberculous mycobacteria in cystic fibrosis associated with allergic bronchopulmonary aspergillosis and steroid therapy. Eur Respir J. 2005;25(2):324–8.

    Article  CAS  PubMed  Google Scholar 

  106. Colin AA. Eradication of mycobacterium abscessus in a chronically infected patient with cystic fibrosis. Pediatr Pulmonol. 2000;30(3):267–8.

    Article  CAS  PubMed  Google Scholar 

  107. Martinez S, McAdams HP, Batchu CS. The many faces of pulmonary nontuberculous mycobacterial infection. AJR Am J Roentgenol. 2007;189(1):177–86.

    Article  PubMed  Google Scholar 

  108. Flume PA, et al. Massive hemoptysis in cystic fibrosis. Chest. 2005;128(2):729–38.

    Article  PubMed  Google Scholar 

  109. Charan NB, Baile EM, Pare PD. Bronchial vascular congestion and angiogenesis. Eur Respir J. 1997;10(5):1173–80.

    Article  CAS  PubMed  Google Scholar 

  110. Flume PA, et al. Cystic fibrosis pulmonary guidelines: pulmonary complications: hemoptysis and pneumothorax. Am J Respir Crit Care Med. 2010;182(3):298–306.

    Article  PubMed  Google Scholar 

  111. Flight WG, et al. Outcomes following bronchial artery embolisation for haemoptysis in cystic fibrosis. Cardiovasc Intervent Radiol. 2017;40(8):1164–8.

    Article  CAS  PubMed  Google Scholar 

  112. Barben J, et al. Bronchial artery embolization for hemoptysis in young patients with cystic fibrosis. Radiology. 2002;224(1):124–30.

    Article  PubMed  Google Scholar 

  113. Monroe EJ, et al. An interventionalist’s guide to hemoptysis in cystic fibrosis. Radiographics. 2018;38(2):624–41.

    Article  PubMed  Google Scholar 

  114. Giron Moreno RM, Caballero P, Friera A. Multidetector computed tomography angiography for pre-embolization assessment in cystic fibrosis patients with massive haemoptysis. Respir Med. 2014;108(5):816–7.

    Article  PubMed  Google Scholar 

  115. Hayes D Jr, et al. Preprocedural planning with prospectively triggered multidetector row CT angiography prior to bronchial artery embolization in cystic fibrosis patients with massive hemoptysis. Lung. 2012;190(2):221–5.

    Article  PubMed  Google Scholar 

  116. Flume PA, et al. Pneumothorax in cystic fibrosis. Chest. 2005;128(2):720–8.

    Article  PubMed  Google Scholar 

  117. Tomashefski JF Jr, et al. Pulmonary air cysts in cystic fibrosis: relation of pathologic features to radiologic findings and history of pneumothorax. Hum Pathol. 1985;16(3):253–61.

    Article  PubMed  Google Scholar 

  118. Northfield TC. Oxygen therapy for spontaneous pneumothorax. Br Med J. 1971;4(5779):86–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Spector ML, Stern RC. Pneumothorax in cystic fibrosis: a 26-year experience. Ann Thorac Surg. 1989;47:204–7.

    Article  CAS  PubMed  Google Scholar 

  120. Maturu VN, Agarwal R. Prevalence of Aspergillus sensitization and allergic bronchopulmonary aspergillosis in cystic fibrosis: systematic review and meta-analysis. Clin Exp Allergy. 2015;45(12):1765–78.

    Article  CAS  PubMed  Google Scholar 

  121. Janahi IA, Rehman A, Al-Naimi AR. Allergic bronchopulmonary aspergillosis in patients with cystic fibrosis. Ann Thorac Med. 2017;12(2):74–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Geller DE, et al. Allergic bronchopulmonary aspergillosis in cystic fibrosis: reported prevalence, regional distribution, and patient characteristics. Scientific Advisory Group, Investigators, and Coordinators of the Epidemiologic Study of Cystic Fibrosis. Chest. 1999;116(3):639–46.

    Article  CAS  PubMed  Google Scholar 

  123. Stevens DA, Moss RB, Kurup VP. Allergic broncho-pulmonary aspergillosis in cystic fibrosis: state of the art: cystic Fibrosis Consensus Conference. Clin Infect Dis. 2003;37(Suppl 3):S225–64.

    Article  PubMed  Google Scholar 

  124. Agarwal R. High attenuation mucoid impaction in allergic bronchopulmonary aspergillosis. World J Radiol. 2010;2(1):41–3.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Logan PM, Muller NL. High-attenuation mucous plugging in allergic bronchopulmonary aspergillosis. Can Assoc Radiol J. 1996;47(5):374–7.

    CAS  PubMed  Google Scholar 

  126. Occelli A, et al. Bronchocele density in cystic fibrosis as an indicator of allergic broncho-pulmonary aspergillosis: a preliminary study. Eur J Radiol. 2017;93:195–9.

    Article  PubMed  Google Scholar 

  127. Kraemer R, et al. Effect of allergic bronchopulmonary aspergillosis on lung function in children with cystic fibrosis. Am J Respir Crit Care Med. 2006;174(11):1211–20.

    Article  PubMed  Google Scholar 

  128. Wark P. Pathogenesis of allergic broncho-pulmonary aspergillosis and an evidence-based review of azoles in treatment. Respir Med. 2004;98:915–23.

    Article  PubMed  Google Scholar 

  129. Nove-Josserand R, et al. Case series of omalizumab for allergic bronchopulmonary aspergillosis in cystic fibrosis patients. Pediatr Pulmonol. 2017;52(2):190–7.

    Article  PubMed  Google Scholar 

  130. Jat KR, Walia DK, Khairwa A. Anti-IgE therapy for allergic bronchopulmonary aspergillosis in people with cystic fibrosis. Cochrane Database Syst Rev. 2018;3:CD010288.

    PubMed  Google Scholar 

  131. Slieker MG, et al. Children with cystic fibrosis: who should visit the otorhinolaryngologist? Arch Otolaryngol Head Neck Surg. 2002;128:1245–8.

    Article  PubMed  Google Scholar 

  132. Brihaye P, Jorissen M, Clement PA. Chronic rhinosinusitis in cystic fibrosis (mucoviscidosis). Acta Otorhinolaryngol Belg. 1997;51:323–37.

    CAS  PubMed  Google Scholar 

  133. Coste A, Gilain L, Roger G. Endoscopic and CT-scan evaluation of rhinosinusitis in cystic fibrosis. Rhinology. 1995;33:152–6.

    CAS  PubMed  Google Scholar 

  134. Hadfield PJ, Rowe-Jones JM, Mackay IS. The prevalence of nasal polyps in adults with cystic fibrosis. Clin Otolaryngol Allied Sci. 2000;25(1):19–22.

    Article  CAS  PubMed  Google Scholar 

  135. Nishioka GJ, Cook PR. Paranasal sinus disease in patients with cystic fibrosis. Otolaryngol Clin. 1996;29:193–205.

    CAS  Google Scholar 

  136. Brihaye P, et al. Pathological changes of the lateral nasal wall in patients with cystic fibrosis (mucoviscidosis). Int J Pediatr Otorhinolaryngol. 1994;28(2–3):141–7.

    Article  CAS  PubMed  Google Scholar 

  137. Henriksson G, Westrin KM, Karpati F. Nasal polyps in cystic fibrosis: clinical endoscopic study with nasal lavage fluid analysis. Chest. 2002;121:40–7.

    Article  PubMed  Google Scholar 

  138. Cimmino M, Cavaliere M, Nardone M. Clinical characteristics and genotype analysis of patients with cystic fibrosis and nasal polyposis. Clin Ololaryngol Allied Sci. 2003;28:125–32.

    Article  CAS  Google Scholar 

  139. Hadfield PJ, Rowe-Jones JM, Mackay IS. A prospective treatment trial of nasal polyps in adults with cystic fibrosis. Rhinology. 2000;38(2):63–5.

    CAS  PubMed  Google Scholar 

  140. Virgin FW, et al. Inter-hospital variation in the frequency of sinus surgery in children with cystic fibrosis. Pediatr Pulmonol. 2015;50(3):231–5.

    Article  PubMed  Google Scholar 

  141. Macdonald KI, et al. Endoscopic sinus surgery in patients with cystic fibrosis: a systematic review and meta-analysis of pulmonary function. Rhinology. 2012;50(4):360–9.

    Article  CAS  PubMed  Google Scholar 

  142. Khalfoun S, et al. Improved lung function after sinus surgery in cystic fibrosis patients with moderate obstruction. Otolaryngol Head Neck Surg. 2018;158(2):381–5.

    Article  PubMed  Google Scholar 

  143. Jarrett WA, et al. Endoscopic sinus surgery in cystic fibrosis: effects on pulmonary function and ideal body weight. Ear Nose Throat J. 2004;83(2):118–21.

    Article  PubMed  Google Scholar 

  144. Rowe-Jones JM, Mackay IS. Endoscopic sinus surgery in the treatment of cystic fibrosis with nasal polyposis. Laryngoscope. 1996;106(12):1540–4.

    Article  CAS  PubMed  Google Scholar 

  145. Rickert S, et al. Cystic fibrosis and endoscopic sinus surgery: relationship between nasal polyposis and likelihood of revision endoscopic sinus surgery in patients with cystic fibrosis. Arch Otolaryngol Head Neck Surg. 2010;136(10):988–92.

    Article  PubMed  Google Scholar 

  146. Leung MK, et al. Effects of sinus surgery on lung transplantation outcomes in cystic fibrosis. Am J Rhinol. 2008;22(2):192–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Casey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krone, K., Casey, A. (2020). Cystic Fibrosis. In: Cleveland, R., Lee, E. (eds) Imaging in Pediatric Pulmonology. Springer, Cham. https://doi.org/10.1007/978-3-030-23979-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23979-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23978-7

  • Online ISBN: 978-3-030-23979-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics