Skip to main content
Log in

Evaluation of ferrous and ferric Mössbauer fractions

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The Mössbauer fractions f for various ferrous- and/or ferric-containing oxides and oxyhydroxides, silicates and carbonates were evaluated from the experimental temperature dependence of their center shifts, using the Debye approximation for the second-order Doppler shift. It is concluded that ferrous ions exhibit a lower fraction as compared to ferric ions. Using standard mixtures of α-Fe2O3 with selected Fe2+ or Fe3+ compounds, it is found that the calculated Fe3+ f values are somewhat overestimated with respect to those of Fe2+. Possible explanations for this shortcoming are discussed and it is suggested that a different temperature dependence of the intrinsic isomer shift is the most likely reason. This suggestion is corroborated by analyses of hematite and hedenbergite data which are available for temperatures up to 900 K and 800 K respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amthauer G, Annersten H, Hafner SS (1976) The Mössbauer spectrum of 57Fe in silicate garnets. Z Kristallogr 143:14–55

    Google Scholar 

  • Bowen LH, De Grave E, Reid DA, Graham RC, Edinger SB (1989) Mössbauer study of a California Desert celadonite and its pedogenically-related smectite. Phys Chem Minerals 16:697–703

    Google Scholar 

  • Chambaere DG, De Grave E, Vanleerberghe RL, Vandenberghe RE (1984) The electric field gradient at the iron sites in β-FeOOH. Hyperfine Interactions 20:249–262

    Google Scholar 

  • De Grave E, Vochten R (1985) An 57Fe Mössbauer effect study of ankerite. Phys Chem Minerals 12:108–113

    Google Scholar 

  • De Grave E, Vanleerberghe R, Verdonck L, De Geyter G (1984) Mössbauer and infrared spectroscopic studies of Belgian chloritoids. Phys Chem Minerals 11:85–94

    Google Scholar 

  • De Grave E, Verbeeck AE, Chambaere DG (1985) Influence of small aluminum substitutions on the hematite lattice. Phys Lett A107:181–184

    Google Scholar 

  • De Grave E, Persoons RM, Chambaere DG, Vandenberghe RE, Bowen LH (1986) An 57Fe Mössbauer effect study of poorly crystalline γ-FeOOH. Phys Chem Minerals 13:61–67

    Google Scholar 

  • Dyar MD (1986) Comment on “Ferrous/ferric Mössbauer analysis of simulated nuclear waste glass with and without computer fitting”. J Am Ceram Soc 69:C160-C162

    Google Scholar 

  • Ellwood BB, Burkart B, Rajeshwar K, Darwin RL, Neeley RA, McCall AB, Long GJ, Buhl ML, Hickcox CW (1989) Are the iron carbonate minerals, ankerite and ferroan dolomite, like siderite, important in paleomagnetism? J Geophys Res 94:7321–7331

    Google Scholar 

  • Frauenfelder H (1963) The Mössbauer effect. W.A. Benjamin, New York, pp 1–336

    Google Scholar 

  • Heberle J (1971) The Debye integrals, the thermal shift and the Mössbauer fraction. In: Gruverman IJ (ed) Mössbauer effect methodology, Vol 7. Plenum Press, New York, pp 299–308

    Google Scholar 

  • Herber RH (1984) Structure, bonding, and the Mössbauer lattice temperature. In: Herber RH (ed) Chemical Mössbauer spectroscopy. Plenum Press, New York, pp 199–216

    Google Scholar 

  • Karraker DG (1986) private communication

  • Kolk B (1984) Studies of dynamical properties of solids with the Mössbauer effect. In: Horton GK, Maradudin AA (eds) Dynamical properties of solids, Vol. 5. North Holland, Amsterdam, pp 3–328

    Google Scholar 

  • Lafleur LD, Goodman C (1971) Characteristic temperatures of the Mössbauer fraction and thermal-shift measurements in iron and iron salts. Phys Rev B 4:2915–2920

    Google Scholar 

  • Leider HR, Pipkorn DN (1968) Mössbauer effect in MgO:Fe2+; low-temperature quadrupole splitting. Phys Rev 165:494–500

    Google Scholar 

  • Perkins HK, Hazony Y (1972) Temperature-dependent crystal field and charge density: Mössbauer studies of FeF2, KFeF3, FeCl2, and FeF3. Phys Rev B 5:7–18

    Google Scholar 

  • Persoons RM (1990) Mössbauerstudie van de hyperfijnparameters in CoxFe3-xO4, 0<x<0.6, in het temperatuurgebied boven de verweytransitie. PhD Thesis, Gent State University, p V-10

  • Pound RV, Rebka GA Jr (1960) Variation with temperature of the energy of recoil-free gamma rays from solids. Phys Rev Lett 4:274–277

    Google Scholar 

  • Seifert F, Olesch M (1977) Mössbauer spectroscopy of grandidierite, (Mg,Fe)Al3BSiO9. Am Mineral 62:547–553

    Google Scholar 

  • Vandenberghe RE, Verbeeck AE, De Grave E (1986) On the Morin transition in Mn-substituted hematite. J Magn Magn Mater 54–57:898–900

    Google Scholar 

  • Vandenberghe RE, De Grave E (1989) Mössbauer effect studies of oxidic spinels. In: Long GJ, Grandjean F (eds) Mössbauer spectroscopy applied to inorganic chemistry, Vol 3. Plenum Press, New York, pp 59–182

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Grave, E., Van Alboom, A. Evaluation of ferrous and ferric Mössbauer fractions. Phys Chem Minerals 18, 337–342 (1991). https://doi.org/10.1007/BF00200191

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00200191

Keywords

Navigation