Skip to main content
Log in

Calcium transport proteins in the nonfailing and failing heart: gene expression and function

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

In heart failure alterations of intracellular Ca2+ handling are thought to be a major reason for impaired contraction and relaxation. Peak Ca2+ transients are reduced, resting Ca2+ levels elevated, and the time course of diastolic Ca2+ decline is markedly prolonged in failing hearts. The proteins of the sarcoplasmic reticulum and the sarcolemmal Na+/Ca2+ exchanger are the most important tools for Ca2+ homeostasis in the cardiomyocyte, and their molecular cloning has allowed prediction of structure/function analysis. The investigation of function and gene expression of these proteins in failing myocardium has been an area of intensive research in recent years in order to provide a more detailed understanding of the pathophysiology of heart failure. Quantitative changes in expression of the sarcoplasmic reticulum Ca2+-ATPase, the ryanodine receptor, and the Na+/Ca2+ exchanger with correlations to functional alterations have been reported both in experimental animal models and in the human failing heart. However, in human heart failure these findings are currently the subject of a lively discussion because observations have apparently been in part contradictory. This review discusses the proteins involved in myocardial Ca2+ handling and describes the current state of research on expressional and functional alterations and their potential implication in the pathomechanism of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANF :

Atrial natriuretic factor

PLN :

Phospholamban

RyR :

Ryanodine receptor

SR :

Sarcoplasmic reticulum

SERCA :

Sarco(endo)plasmic reticulum Ca2+-ATPase

References

  1. Langer GA (1994) Myocardial calcium compartmentation. Trends Cardiovasc Med 4:103–109

    Google Scholar 

  2. Arai M, Matsui H, Periasamy M (1994) Sarcoplasmic reticulum gene expression in cardiac hypertrophy and heart failure. Circ Res 74:555–564

    Google Scholar 

  3. Gibbons WR (1986) Cellular control of cardiac contraction. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE (eds) The heart and cardiovascular system. Raven, New York, pp 747–778

    Google Scholar 

  4. Barry WH, Bridge JHB (1993) Intracellular calcium homeostasis in cardiac myocytes. Circulation 87:1806–1815

    Google Scholar 

  5. Wynne DG, Koban MU, Boheler KR (1995) Molecular mechanisms of relaxation. In: Yacoub M (ed) Annual of cardiac surgery 1995, 8th edn. Current Science, Philadelphia, (in press)

    Google Scholar 

  6. Smith VE, Katz AM (1983) Inotropic and lusitropic abnormalities in the genesis of heart failure. Eur Heart J 4 [Suppl A]:7–17

    Google Scholar 

  7. Gwathmey JK, Morgan JP (1985) Altered calcium handling in experimental pressure-overload hypertrophy in the ferret. Circ Res 57:836–843

    Google Scholar 

  8. Perreault CL, Shannon RP, Komamura K, Vatner SF, Morgan JP (1992) Abnormalities in intracellular calcium regulation and contractile function in myocardium from dogs with pacing-induced heart failure. J Clin Invest 89:932–938

    Google Scholar 

  9. Gwathmey JK, Copelas L, MacKinnon R, Schoen F, Feldman M, Grossman W, Morgan JP (1987) Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res 61:70–76

    CAS  PubMed  Google Scholar 

  10. Morgan JP, Enry RE, Allen PD, Grossman W, Gwathmey JK (1990) Abnormal intracellular calcium handling, a major cause of systolic and diastolic dysfunction in ventricular myocardium from patients with heart failure. Circulation 81 [Suppl III]: III21-III32

    Google Scholar 

  11. Beuckelmann DJ, Näbauer M, Erdmann E (1992) Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 85:1046–1055

    CAS  PubMed  Google Scholar 

  12. Jorgensen AO, Shen AC-Y, Arnold W, McPherson PS, Campbell KP (1993) The Ca2+ release channel/ryanodine receptor is localized in junctional and corbular sarcoplasmic reticulum in cardiac muscle. J Cell Biol 120:969–980

    Google Scholar 

  13. Fleischer S, Inui M (1989) Biochemistry and biophysics of excitation-contraction coupling. Annu Rev Biophys Biophys Chem 18:333–364

    Google Scholar 

  14. Otsu K, Willard HF, Khanna VK, Zorzato F, Green NM, MacLennan DH (1990) Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J Biol Chem 265:13472–13483

    Google Scholar 

  15. Marks AR, Tempst P, Hwang KS, Taubmann MB, Inui M, Chadwick C, Fleischer S, Nadal-Ginard B (1989) Molecular cloning and characterization of the ryanodine receptor/junctional channel complex cDNA from skeletal muscle sarcoplasmic reticulum. Proc Natl Acad Sci USA 86:8683–8687

    Google Scholar 

  16. Zorzato F, Fujii J, Otsu K, Phillips M, Green NM, Lai FA, Meissner G, MacLennan DH (1990) Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 265:2244–2256

    Google Scholar 

  17. Brillantes A-M, Bezprozvannaya S, Marks AR (1994) Developmental and tissue-specific regulation of rabbit skeletal and cardiac muscle calcium channels involved in excitation-contraction coupling. Circ Res 75:503–510

    Google Scholar 

  18. Brillantes A-M, Allen P, Takahashi T, Izumo S, Marks AR (1992) Differences in cardiac calcium release channel (ryanodine receptor) expression in myocardium from patients with end-stage heart failure caused by ischemic versus dilated cardiomyopathy. Circ Res 71:18–26

    Google Scholar 

  19. MacLennan DH (1990) Molecular tools to elucidate problems in excitation-contraction coupling. Biophys J 58:1355–1365

    Google Scholar 

  20. Tada M, Yamamoto T, Tonomura Y (1978) Molecular mechanisms of active calcium transport by sarcoplasmic reticulum. Physiol Rev 58:1–79

    Google Scholar 

  21. Lompré A-M, Anger M, Levitsky D (1994) Sarco(endo)plasmic reticulum calcium pumps in the cardiovascular system: function and gene expression. J Mol Cell Cardiol 26:1109–1121

    Google Scholar 

  22. Brandl CJ, deLeon S, Martin DR, MacLennan DH (1987) Adult forms of the Ca2+ ATPase of sarcoplasmic reticulum. J Biol Chem 262:3768–3774

    Google Scholar 

  23. Burk SE, Lytton J, MacLennan DH, Shull GE (1989) cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar Ca2+ pump. J Biol Chem 264:18561–18568

    Google Scholar 

  24. Lompré A-M, de la Bastie D, Boheler KR, Schwartz K (1989) Characterization and expression of the rat heart sarcoplasmic reticulum Ca2+-ATPase mRNA. FEBS Lett 249:35–4

    Article  PubMed  Google Scholar 

  25. Lytton J, MacLennan DH (1988) Molecular cloning of cDNAs from human kidney coding for two alternatively spliced products of the cardiac Ca2+-ATPase gene. J Biol Chem 263:15024–15031

    Google Scholar 

  26. Zarain-Herzberg A, MacLennan DH, Periasamy M (1990) Characterization of rebbit cardiac sarco(endo)plasmic reticulum Ca2+-ATPase gene. J Biol Chem 265:4670–4677

    Google Scholar 

  27. Nagai R, Zarain-Herzberg A, Brandl CJ, Fujii J, Tada M, MacLennan DH, Alpert NR, Periasamy M (1989) Regulation of myocardial Ca2+-ATPase and phospholamban mRNA expression in response to pressure overload and thyroide hormone. Proc Natl Acad Sci USA 86:2966–2970

    Google Scholar 

  28. Schwartz K, Carrier L, Mercadier J-J, Lompré A-M, Boheler KR (1993) Molecular phenotype of the hypertrophied and failing myocardium. Circulation 87 [Suppl VII]:VII-5-VII-10

    Google Scholar 

  29. Komuro I, Kurabayashi M, Shibazaki Y, Takaku F, Yazaki Y (1989) Molecular cloning and characterization of a Ca2+ + Mg2+-dependent adenosine triphosphatase from rat cardiac sarcoplasmic reticulum. Regulation expression by pressure overload and developmental stage. J Clin Invest 83:1102–1108

    Google Scholar 

  30. Lompré A-M, Lambert F, Lakatta EG, Schwartz K (1991) Expression of sarcoplasmic reticulum Ca2+-ATPase and calsequestrin genes in rat heart during ontogenic development and aging. Circ Res 69:1380–1388

    Google Scholar 

  31. Maciel LMZ, Polikar R, Rohrer D, Popovich BK, Dillmann WH (1990) Age-induced decreases in the messenger RNA coding for the sarcoplasmic reticulum Ca2+-ATPase of the rat heart. Circ Res 67:230–234

    Google Scholar 

  32. Besse S, Assayag P, Delcayre C, Carre F, Cheav SL, Lecarpentier Y, Swynghedauw B (1993) Normal and hypertrophied rat heart: mechanical and molecular characteristics. Am J Physiol 265:H183-H190

    Google Scholar 

  33. Inesi G, Kirtley ME (1990) Coupling of catalytic and channel function in the Ca2+ transport ATPase. J Membr Biol 116:1–18

    Google Scholar 

  34. Fujii J, Ueno A, Kitano K, Tanaka S, Kadoma S, Tada M (1987) Complete complementary DNA-derived amino-acid sequence of canine cardiac phospholamban. J Clin Invest 79:301–304

    Google Scholar 

  35. Ganim JR, Luo W, Ponniah S, Grupp I, Kim HW, Ferguson DG, Kadambi V, Neumann JC, Doetschmann T, Kranias EG (1992) Mouse phospholamban gene expression during development in vivo and in vitro. Circ Res 71:1021–1030

    Google Scholar 

  36. Fujii J, Lytton J, Tada M, MacLennan DH (1987) Rabbit cardiac and slow-twitch muscle express the same phospholamban gene. FEBS Lett 227:51–55

    Google Scholar 

  37. Fujii J, Zarain-Herzberg A, Willard HF, Tada M, MacLennan DH (1991) Structure of the rabbit phospholamban gene, cloning of the human cDNA, and assignment of the gene to human chromosome 6. J Biol Chem 266:11669–11675

    Google Scholar 

  38. James P, Inui M, Tada M, Chiesi M, Carafoli E (1989) Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature (Lond) 342:90–92

    Google Scholar 

  39. Toyofoku T, Kurzydlowski K, Tada M, MacLennan DH (1993) Identification of regions in the Ca2+-ATPase of sarcoplasmic reticulum that affect functional association with phospholamban. J Biol Chem 268:2809–2815

    Google Scholar 

  40. Colyer J (1993) Control of the calcium pump of cardiac sarcoplasmic reticulum. A specific role for the pentameric structure of phospholamban? Cardiovasc Res 27:1766–1771

    Google Scholar 

  41. Lindemann JP, Jones LR, Hathaway DR, Henry BG, Watanabe AM (1983) β-Adrenergic stimulation of phospholamban phosphorylation and Ca2+-ATPase activity in guinea pig ventricles. J Biol Chem 258:464–471

    Google Scholar 

  42. Lindemann JP, Watanabe AM (1985) Phosphorylation of phospholamban in intact myocardium. Role of Ca2+-calmodulindependent mechanisms. J Biol Chem 260:4516–4525

    Google Scholar 

  43. Voss J, Jones LR, Thomas DD (1994) The physical mechanism of calcium pump regulation in the heart. Biophys J 67:190–196

    Google Scholar 

  44. Luo W, Grupp IL, Harrer J, Ponniah S, Grupp G, Duffy JJ, Doetschman T, Kranias EG (1994) Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of β-agonist stimulation. Circ Res 75:401–409

    Google Scholar 

  45. MacLennan DH, Campbell KP, Reithmeir RAF (1983) Calsequestrin. In: Cheung WY (ed) Calcium and cell function. Academic, New York, pp 151–173

    Google Scholar 

  46. Jorgensen AO, Shen AC-Y, Campbell KP (1985) Ultrastructural localization of calsequestrin in adult rat atrial and ventricular muscle cells. J Cell Biol 101:257–268

    Google Scholar 

  47. Scott BT, Simmerman HKB, Collins JH, Nadal-Ginard B, Jones LR (1988) Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning. J Biol Chem 263:8958–8964

    Google Scholar 

  48. Arai M, Alpert NR, Periasamy M (1991) Cloning and characterization of the gene encoding rabbit cardiac calsequestrin. Gene 109:275–279

    Article  CAS  PubMed  Google Scholar 

  49. Fliegel L, Ohnishi M, Carpenter MR, Khanna VK, Reithmeir RAF, MacLennan DH (1987) Amino acid sequence of fasttwitch skeletal muscle calsequestrin deduced from cDNA and peptide sequencing. Proc Natl Acad Sci USA 84:1167–1171

    Google Scholar 

  50. Fliegel L, Leberer E, Green NM, MacLennan DH (1989) The fast-twitch muscle calsequestrin isoform predominates in rabbit slow-twitch soleus muscle. FEBS Lett 242:297–300

    Google Scholar 

  51. Bers DM, Lederer WJ, Berlin JR (1990) Intracellular Ca transients in rat cardiac myocytes: role of Na-Ca exchange in excitation-contraction coupling. Am J Physiol 258:C944-C954

    Google Scholar 

  52. Studer R, Reinecke H, Bilger J, Eschenhagen T, Böhm M, Hasenfuβ G, Just H, Holtz J, Drexler H (1994) Gene expression of the cardiac Na+-Ca2+ exchanger in end-stage human heart failure. Circ Res 75:443–453

    Google Scholar 

  53. Frank JS, Mottino G, Reid D, Molday RS, Philipson KD (1992) Distribution of the Na+-Ca2+ exchange protein in mammalian cardiac myocytes: an immunofluorescence and immunocolloidal gold-labeling study. J Cell Biol 117:337–345

    Google Scholar 

  54. Kieval RS, Bloch RJ, Lindenmayer GE, Ambesi A, Lederer WJ (1992) Immunofluorescence localization of the Na-Ca exchanger in heart cells. Am J Physiol 263:C545-C550

    Google Scholar 

  55. Kofuji P, Lederer WJ, Schulze DH (1994) Mutually exclusive and cassette exons underlie alternatively spliced isoforms of the Na/Ca exchanger. J Biol Chem 269:5145–5149

    Google Scholar 

  56. Low W, Kasir J, Rahamimoff H (1993) Cloning of the rat heart Na+-Ca2+ exchanger and its functional expression in HeLa cells. FEBS Lett 316:63–67

    Google Scholar 

  57. Nicoll DA, Longoni S, Philipson KD (1990) Molecular cloning and functional expression of the cardiac sarcolemmal Na+-Ca2+ exchanger. Science 250:562–565

    Google Scholar 

  58. Komuro I, Wenninger KE, Philipson KD, Izumo S (1992) Molecular cloning and characterization of the human cardiac Na+/Ca2+ exchanger cDNA. Proc Natl Acad Sci USA 89:4769–4773

    Google Scholar 

  59. Boerth SR, Zimmer DB, Artmann M (1994) Steady-state mRNA levels of the sarcolemmal Na+/Ca2+ exchanger peak near birth in developing rabbit and rat hearts. Circ Res 74:354–359

    Google Scholar 

  60. Kohmoto O, Levi AJ, Bridge JHB (1994) Relation between reverse sodium-calcium exchange and sarcoplasmic reticulum calcium release in guinea pig ventricular cells. Circ Res 74:550–554

    Google Scholar 

  61. Lamers JHJ, Stinis JT (1979) Defective calcium pump in the sarcoplasmic reticulum of the hypertrophied rabbit heart. Life Sci 24:2313–2320

    Google Scholar 

  62. de la Bastie D, Levitsky D, Rappaport L, Mercadier J-J, Marotte F, Wisnewsky C, Brovkovich V, Schwartz K, Lompré AM (1990) Function of the sarcoplasmic reticulum and of its Ca2+-ATPase gene in pressure overload-induced cardiac hypertrophy in the rat. Circ Res 66:554–564

    PubMed  Google Scholar 

  63. Levitsky D, de la Bastie D, Schwartz K, Lompré A-M (1991) Ca2+-ATPase and function of sarcoplasmic reticulum during cardiac hypertrophy. Am J Physiol [Suppl Oct] 261:23–26

    Google Scholar 

  64. Feldman AM, Weinberg EO, Ray PE, Lorell BH (1993) Selective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic banding. Circ Res 73:184–192

    CAS  PubMed  Google Scholar 

  65. Buttrick PM, Kaplan M, Leinwand LA, Scheuer J (1994) Alterations in gene expression in the rat heart after chronic pathological and physiological loads. J Mol Cell Cardiol 26:61–67

    Google Scholar 

  66. Kuo TH, Tsang W, Wang KKW, Carlock L (1992) Simultaneous reduction of the sarcolemmal and SR calcium ATPase activities and gene expression in cardiomyopathic hamster. Biochim Biophys Acta 1138:343–349

    Google Scholar 

  67. Naudin VN, Rannou OF, Beuve CS, Charlemagne D (1991) The density of ryanodine receptors decreased with pressure overload-induced rat cardiac hypertrophy. FEBS Lett 285:135–138

    Google Scholar 

  68. Hanf R, Drubaix I, Marotte F, Lelièvre LG (1988) Rat cardiac hypertrophy: altered sodium-calcium exchange activity in sarcolemmal vesicles. FEBS Lett 236:145–149

    Google Scholar 

  69. Dixon IMC, Hata T, Dhalla NS (1992) Sarcolemmal calcium transport in congestive heart failure due to myocardial infarction in rats. Am J Physiol 262:H1387-H1394

    Google Scholar 

  70. Hatem SN, Sham JSK, Morad M (1994) Enhanced Na+-Ca2+ exchange activity in cardiomyopathic Syrian hamster. Circ Res 74:253–261

    Google Scholar 

  71. Kent RL, Rozich JD, McCollam PL, McDermott DE, Thacker UF, Menick DR, McDermott PJ, Cooper IV G (1993) Rapid expression of the Na+-Ca2+ exchanger in response to cardiac pres overload. Am J Physiol 265:H1024-H1029

    Google Scholar 

  72. Katz A (1990) Cardiomyopathy of overload. A major determinant of prognosis in congestive heart failure. N Engl J Med 322:100–110

    CAS  PubMed  Google Scholar 

  73. Packer M (1990) Abnormalities of diastolic function as a potential cause of exercise intolerance in chronic heart failure. Circulation 81 [Suppl III]:III-78-III-86

    Google Scholar 

  74. Grossman W (1991) Diastolic dysfunction in congestive heart failure. N Engl J Med 325:1557–1564

    Google Scholar 

  75. Beuckelmann DJ, Lindner M, Erdmann E (1994) Sarcoplasmic reticulum calcium content is altered in isolated ventricular myocytes from patients with terminal heart failure (abstract). Circulation 90:1–216

    Google Scholar 

  76. Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J, Holubarsch C, Posival H, Just H, Drexler H (1994) Relation between myocardial function and expression of sarcoplasmic reticulum Ca2+-ATPase in failing and nonfailing human myocardium. Circ Res 75:434–442

    Google Scholar 

  77. Hasenfuss G, Mulieri LA, Leavitt BJ, Allen PD, Haeberle JR, Alpert NR (1992) Alteration of contractile function and excitation-contraction coupling in dilated cardiomyopathy. Circ Res 70:1225–1232

    Google Scholar 

  78. Takahashi T, Allen PD, Lacro RV, Marks AR, Dennis AR, Schoen FJ, Grossman W, Marsh JD, Izumo S (1992) Expression of dihydropyridine receptor (Ca2+ channel) and calsequestrin genes in the myocardium of patients with end-stage heart failure. J Clin Invest 90:927–935

    Google Scholar 

  79. Arai M, Alpert NR, MacLennan DH, Barton P, Periasamy M (1993) Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ Res 72:463–469

    Google Scholar 

  80. Movsesian MA, Karimi M, Green K, Jones LR (1994) Ca2+transporting ATPase, phospholamban, and calsequestrin levels in nonfailing and failing human myocardium. Circulation 90:653–657

    Google Scholar 

  81. Limas CJ, Olivari M-T, Goldenberg IF, Levine TB, Benditt DG, Simon A (1987) Calcium uptake by sarcoplsmic reticulum in human dilated cardiomyopathy. Cardiovasc Res 21:601–605

    Google Scholar 

  82. Schwinger RHG, Böhm M, Bavendiek U, Karczewski P, Flesch M, Krause E-G, Erdmann E (1995) Reduced mRNAlevels and Ca2+-ATPase activity but unchanged protein levels of SERCA II in myocardium from patients with dilated cardiomyopathy compared to non-failing tissue (abstract). Eur Heart J 16 (Suppl):72

    Google Scholar 

  83. Movsesian MA, Bristow MR, Krall J (1989) Ca2+ uptake by cardiac sarcoplasmic reticulum from patients with idiopathic dilated cardiomyopathy. Circ Res 65:1141–1144

    Google Scholar 

  84. Mercadier J-J, Lompré A-M, Duc P, Boheler KR, Fraysse J-B, Wisnewsky C, Allen PD, Komajda M, Schwartz K (1990) Altered sarcoplasmic reticulum Ca2+-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest 85:305–309

    Google Scholar 

  85. Darvish A, Schomisch-Moravec C (1994) Decreased sarcoplasmic reticulum calcium content in the failing heart is associated with a decrease in Ca2+ ATPase and phospholamban proteins (abstract). Circulation 90:1–217

    Google Scholar 

  86. Feldman AM, Ray PE, Silan CM, Mercer JA, Minobe W, Bristow MR (1991) Selective gene expression in failing human heart. Quantification of steady-state levels of messenger RNA in endomyocardial biopsies using the polymerase chain reaction. Circulation 83:1866–1872

    Google Scholar 

  87. Böhm M, Reiger B, Schwinger RHG, Erdmann E (1994) cAMP concentrations, cAMP dependent protein kinase activity, and phospholamban in non-failing and failing myocardium. Cardiovasc Res 28:1713–1719

    Google Scholar 

  88. Danielsen W, von der Leyen H, Meyer W, Neumann J, Schmitz W, Scholz H, Starbatty J, Stein B, Döring V, Kalmar P (1989) Basal and isoprenaline-stimulated cAMP content in failing versus nonfailing human cardiac preparations. J Cardiovasc Pharmacol 14:171–173

    Google Scholar 

  89. Schwartz K, Boheler KR, de la Bastie D, Lompré A-M, Mercadier J-J (1992) Switches in cardiac muscle gene expression as a result of pressure and volume overload. Am J Physiol 262:R364-R369

    Google Scholar 

  90. Flesch M, Schwinger RHG, Müller-Ehmsen J, Südkamp F, Pütz F, Böhm M (1995) Enhanced expression of the Na+-Ca2+-exchanger and its functional relevance in the failing human he (abstract). Eur Heart J 16 (Suppl):458

    Google Scholar 

  91. von Harsdorf R, Schott RJ, Shen Y-T, Vatner SF, Mahdavi V, Nadal-Ginard B (1993) Gene injection into canine myocardium as a useful model for studying gene expression in the heart of large mammals. Circ Res 72:688–695

    Google Scholar 

  92. Robbins J (1993) Gene targeting. The precise manipulation of the mammalian genome. Circ Res 73:39

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wankerl, M., Schwartz, K. Calcium transport proteins in the nonfailing and failing heart: gene expression and function. J Mol Med 73, 487–496 (1995). https://doi.org/10.1007/BF00198900

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198900

Key words

Navigation