Skip to main content

Characteristics of Intracellular Ca2+ Handling Proteins in Heart Function in Health and Disease

  • Chapter
  • First Online:
Heart Rate and Rhythm

Abstract

In view of its ability to release and accumulate Ca2+, the sarcoplasmic reticulum (SR) plays a major role in cardiomyocyte excitation–contraction coupling. Since Ca2+ is important in the functions of both mitochondria and nucleus, it appears that these organelles are involved in excitation–metabolism coupling and excitation–transcription coupling. This brief article discusses some of the characteristics of the SR, mitochondria, and nucleus with respect to their Ca2+ transport systems in cardiomyocytes and the role of Ca2+ in different coupling processes. In addition, the influence of fluctuations in the cytoplasmic Ca2+ concentration on cardiomyocyte contractile activity, metabolism, and gene expression in heart disease is presented. The potential of the SR and the mitochondria and nucleus as therapeutic targets for the treatment of heart disease is also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eisner DA, Caldwell JL, Kistamás K, Trafford AW. Calcium and excitation-contraction coupling in the heart. Circ Res. 2017;121:181–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berlin JR, Bassani JW, Bers DM. Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes. Biophys J. 1994;67:1775–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dhalla NS. Excitation-contraction coupling in heart. I. Comparison of calcium uptake by the sarcoplasmic reticulum and mitochondria of the rat heart. Arch Int Physiol Biochim. 1969;77:916–34.

    CAS  PubMed  Google Scholar 

  4. Alonso MT, Villalobos C, Chamero P, Alvarez J, Garcia-Sancho J. Calcium microdomains in mitochondria and nucleus. Cell Calcium. 2006;40:513–25.

    Article  CAS  PubMed  Google Scholar 

  5. Dhalla NS, Saini-Chohan HK, Rodriguez-Leyva D, Elimban V, Dent MR, Tappia PS. Subcellular remodeling may induce cardiac dysfunction in congestive heart failure. Cardiovasc Res. 2009;81:429–38.

    Article  CAS  PubMed  Google Scholar 

  6. Bers DM. Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol. 2008;70:23–49.

    Article  CAS  PubMed  Google Scholar 

  7. Dhalla NS, Saini HK, Tappia PS, Sethi R, Mengi SA, Gupta SK. Potential role and mechanisms of subcellular remodeling in cardiac dysfunction due to ischemic heart disease. J Cardiovasc Med. 2007;8:238–50.

    Article  Google Scholar 

  8. Nader M. The SLMAP/Striatin complex: an emerging regulator of normal and abnormal cardiac excitation-contraction coupling. Eur J Pharmacol. 2009;5:858.

    Google Scholar 

  9. Lukyanenko V, Ziman A, Lukyanenko A, Salnikov V, Lederer WJ. Functional groups of ryanodine receptors in rat ventricular cells. J Physiol. 2007;583:251–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meissner G. Molecular regulation of cardiac ryanodine receptor ion channel. Cell Calcium. 2004;35:621–8.

    Article  CAS  PubMed  Google Scholar 

  11. Antos CL, Frey N, Marx SO, Reiken S, Gaburjakova M, Richardson JA, et al. Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase A. Circ Res. 2001;89:997–1004.

    Article  CAS  PubMed  Google Scholar 

  12. Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell. 2000;101:365–76.

    Article  CAS  PubMed  Google Scholar 

  13. Diaz ME, Graham HK, O’neill SC, Trafford AW, Eisner DA. The control of sarcoplasmic reticulum Ca2+ content in cardiac muscle. Cell Calcium. 2005;38:391–6.

    Article  CAS  PubMed  Google Scholar 

  14. Zalk R, Lehnart SE, Marks AR. Modulation of the ryanodine receptor and intracellular calcium. Annu Rev Biochem. 2007;76:367–85.

    Article  CAS  PubMed  Google Scholar 

  15. Yamamoto T, Yano M, Xu X, Uchinoumi H, Tateishi H, Mochizuki M, et al. Identification of target domains of the cardiac ryanodine receptor to correct channel disorder in failing hearts. Circulation. 2008;117:762–72.

    Article  CAS  PubMed  Google Scholar 

  16. Yano M. Ryanodine receptor as a new therapeutic target of heart failure and lethal arrhythmia. Circ J. 2008;72:509–14.

    Article  CAS  PubMed  Google Scholar 

  17. Lehnart SE, Mongillo M, Bellinger A, Lindegger N, Chen BX, Hsueh W, et al. Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice. J Clin Invest. 2008;118:2230–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dhalla NS, Dent MR, Tappia PS, Sethi R, Barta J, Goyal RK. Subcellular remodeling as a viable target for the treatment of congestive heart failure. J Cardiovasc Pharmacol Therapeut. 2006;11:31–45.

    Article  CAS  Google Scholar 

  19. Tada M, Yamada M, Kadoma M, Inui M, Ohmori F. Calcium transport by cardiac sarcoplasmic reticulum and phosphorylation of phospholamban. Mol Cell Biochem. 1982;46:73–95.

    Article  PubMed  Google Scholar 

  20. Toyoshima C, Nakasako M, Nomura H, Ogawa H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature. 2000;405:647–55.

    Article  CAS  PubMed  Google Scholar 

  21. Tada M, Yamada M, Inui M, Ohmori F. Regulation of Ca2+-dependent ATPase of cardiac sarcoplasmic reticulum by cAMP- and calmodulin-dependent phosphorylation of phospholamban. Tanpakushitsu Kakusan Koso. 1982;27:2350–64.

    CAS  PubMed  Google Scholar 

  22. James P, Inui M, Tada M, Chiesi M, Carafoli E. Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature. 1989;342:90–2.

    Article  CAS  PubMed  Google Scholar 

  23. Asahi M, Nakayama H, Tada M, Otsu K. Regulation of sarco(endo)plasmic reticulum Ca2+ adenosine triphosphatase by phospholamban and sarcolipin: implication for cardiac hypertrophy and failure. Trends Cardiovasc Med. 2003;13:152–7.

    Article  CAS  PubMed  Google Scholar 

  24. Babu GJ, Bhupathy P, Timofeyev V, Petrashevskaya NN, Reiser PJ, Chiamvimonvat N, et al. Ablation of sarcolipin enhances sarcoplasmic reticulum calcium transport and atrial contractility. Proc Natl Acad Sci U S A. 2007;104:17867–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kiewitz R, Acklin C, Schafer BW, Maco B, Uhrik B, Wuytack F, et al. Ca2+ −dependent interaction of S100A1 with the sarcoplasmic reticulum Ca2+-ATPase2a and phospholamban in the human heart. Biochem Biophys Res Commun. 2003;306:550–7.

    Article  CAS  PubMed  Google Scholar 

  26. Remppis A, Most P, Löffler E, Ehlermann P, Bernotat J, Pleger S, et al. The small EF-hand Ca2+ binding protein S100A1 increases contractility and Ca2+ cycling in rat cardiac myocytes. Basic Res Cardiol. 2002;97:I56–162.

    Article  PubMed  Google Scholar 

  27. Mercadier JJ, Lompre AM, Duc P, Boheler KR, Fraysse JB, Wisnewsky C, et al. Altered sarcoplasmic reticulum Ca2+-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest. 1990;85:305–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. del Monte F, Williams E, Lebeche D, Schmidt U, Rosenzweig A, Gwathmey JK, et al. Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca2+-ATPase in a rat model of heart failure. Circulation. 2001;104:1424–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Joubert F, Wilding JR, Fortin D, Domergue-Dupont V, Novotova M, Ventura-Clapier R, et al. Local energetic regulation of sarcoplasmic and myosin ATPase is differently impaired in rats with heart failure. J Physiol. 2008;586:5181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Prasad V, Okunade GW, Miller ML, Shull GE. Phenotypes of SERCA and PMCA knockout mice. Biochem Biophys Res Commun. 2004;322:1192–203.

    Article  CAS  PubMed  Google Scholar 

  31. Mayosi BM, Kardos A, Davies CH, Gumedze F, Hovnanian A, Burge S, et al. Heterozygous disruption of SERCA2a is not associated with impairment of cardiac performance in humans: implications for SERCA2a as a therapeutic target in heart failure. Heart. 2006;92:105–9.

    Article  CAS  PubMed  Google Scholar 

  32. Moschella MC, Marks AR. Inositol 1,4,5-trisphosphate receptor expression in cardiac myocytes. J Cell Biol. 1993;120:1137–46.

    Article  CAS  PubMed  Google Scholar 

  33. Kockskamper J, Zima AV, Roderick HL, Pieske B, Blatter LA, Bootman MD. Emerging roles of inositol 1,4,5-trisphosphate signaling in cardiac myocytes. J Mol Cell Cardiol. 2008;45:128–47.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hund TJ, Ziman AP, Lederer WJ, Mohler PJ. The cardiac IP3 receptor: uncovering the role of "the other" calcium-release channel. J Mol Cell Cardiol. 2008;45:159–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lakatta EG, Vinogradova TM, Maltsev VA. The missing link in the mystery of normal automaticity of cardiac pacemaker cells. Ann N Y Acad Sci. 2008;1123:41–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiang QX, Thrower EC, Chester DW, Ehrlich BE, Sigworth FJ. Three-dimensional structure of the type 1 inositol 1,4,5-trisphosphate receptor at 24 a resolution. EMBO J. 2002;21:3575–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ramos-Franco J, Fill M, Mignery GA. Isoform-specific function of single inositol 1,4,5-trisphosphate receptor channels. Biophys J. 1998;75:834–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Swatton JE, Morris SA, Cardy TJ, Taylor CW. Type 3 inositol trisphosphate receptors in RINm5F cells are biphasically regulated by cytosolic Ca2+ and mediate quantal Ca2+ mobilization. Biochem J. 1999;344:55–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Adkins CE, Morris SA, De SH, Sienaert I, Torok K, Taylor CW. Ca2+-calmodulin inhibits Ca2+ release mediated by type-1, 2 and 3 inositol trisphosphate receptors. Biochem J. 2000;345:357–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bultynck G, Sienaert I, Parys JB, Callewaert G, De SH, Boens N, et al. Pharmacology of inositol trisphosphate receptors. Pflugers Arch. 2003;445:629–42.

    Article  CAS  PubMed  Google Scholar 

  41. Kane C, Couch L, Terracciano CM. Excitation-contraction coupling of human induced pluripotent stem cell-derived cardiomyocytes. Front Cell Dev Biol. 2015;3:59.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yoshikane H, Nihei T, Moriyama K. Three-dimensional observation of intracellular membranous structures in dog heart muscle cells by scanning electron microscopy. J Submicrosc Cytol. 1986;18:629–36.

    CAS  PubMed  Google Scholar 

  43. Guerrero-Hernandez A, Verkhratsky A. Calcium signalling in diabetes. Cell Calcium. 2014;56:297–301.

    Article  CAS  PubMed  Google Scholar 

  44. Denton RM, McCormack JG. Ca2+ as a second messenger within mitochondria of the heart and other tissues. Annu Rev Physiol. 1990;52:451–66.

    Article  CAS  PubMed  Google Scholar 

  45. Territo PR, French SA, Dunleavy MC, Evans FJ, Balaban RS. Calcium activation of heart mitochondrial oxidative phosphorylation: rapid kinetics of mVO2, NADH AND light scattering. J Biol Chem. 2001;276:2586–99.

    Article  CAS  PubMed  Google Scholar 

  46. Kirichok Y, Krapivinsky G, Clapham DE. The mitochondrial calcium uniporter is a highly selective ion channel. Nature. 2004;427:360–4.

    Article  CAS  PubMed  Google Scholar 

  47. Moreau B, Nelson C, Parekh AB. Biphasic regulation of mitochondrial Ca2+ uptake by cytosolic Ca2+ concentration. Curr Biol. 2006;16:1672–7.

    Article  CAS  PubMed  Google Scholar 

  48. Gunter KK, Gunter TE. Transport of calcium by mitochondria. J Bioenerg Biomembr. 1994;26:471–85.

    Article  CAS  PubMed  Google Scholar 

  49. Maack C, Cortassa S, Aon MA, Ganesan AN, Liu T, O'Rourke B. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ Res. 2006;99:172–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kwong JQ. The mitochondrial calcium uniporter in the heart: energetics and beyond. J Physiol. 2017;595:3743–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu X, Zhang T, Bossuyt J, Li X, McKinsey TA, Dedman JR, et al. Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J Clin Invest. 2006;116:675–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gustafsson AB, Gottlieb RA. Heart mitochondria: gates of life and death. Cardiovasc Res. 2008;77:334–43.

    Article  CAS  PubMed  Google Scholar 

  53. Maack C, O'Rourke B. Excitation-contraction coupling and mitochondrial energetics. Basic Res Cardiol. 2007;102:369–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ohata H, Chacon E, Tesfai SA, Harper IS, Herman B, Lemasters JJ. Mitochondrial Ca2+ transients in cardiac myocytes during the excitation-contraction cycle: effects of pacing and hormonal stimulation. J Bioenerg Biomembr. 1998;30:207–22.

    Article  CAS  PubMed  Google Scholar 

  55. Pacher P, Csordas P, Schneider T, Hajnoczky G. Quantification of calcium signal transmission from sarco-endoplasmic reticulum to the mitochondria. J Physiol. 2000;529:553–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cortassa S, Aon MA, Marbán E, Winslow RL, O'Rourke B. An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J. 2003;84:2734–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Beutner G, Sharma VK, Lin L, Ryu SY, Dirksen RT, Sheu SS. Type 1 ryanodine receptor in cardiac mitochondria: transducer of excitation-metabolism coupling. Biochim Biophys Acta. 2005;1717:1–10.

    Article  CAS  PubMed  Google Scholar 

  58. Stanley WC, Chandler MP. Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev. 2002;7:115–30.

    Article  CAS  PubMed  Google Scholar 

  59. Kim B, Matsuoka S. Cytoplasmic Na+-dependent modulation of mitochondrial Ca2+ via electrogenic mitochondrial Na+-Ca2+ exchange. J Physiol. 2008;586:1683–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Light PE, Kanji HD, Fox JE, French RJ. Distinct myoprotective roles of cardiac sarcolemmal and mitochondrial KATP channels during metabolic inhibition and recovery. FASEB J. 2001;15:2586–94.

    Article  CAS  PubMed  Google Scholar 

  61. Brandes R, Bers DM. Simultaneous measurements of mitochondrial NADH and Ca2+ during increased work in intact rat heart trabeculae. Biophys J. 2002;83:587–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kuo TH, Zhu L, Golden K, Marsh JD, Bhattacharya SK, Liu BF. Altered Ca2+ homeostasis and impaired mitochondrial function in cardiomyopathy. Mol Cell Biochem. 2002;238:119–27.

    Article  CAS  PubMed  Google Scholar 

  63. O’Rourke B, Cortassa S, Akar F, Aon M. Mitochondrial ion channels in cardiac function and dysfunction. Novartis Found Symp. 2007;287:140–51.

    Article  PubMed  PubMed Central  Google Scholar 

  64. von Hardenberg A, Maack C. Mitochondrial therapies in heart failure. Handb Exp Pharmacol. 2017;243:491–514.

    Article  Google Scholar 

  65. Cao JL, Adaniya SM, Cypress MW, Suzuki Y, Kusakari Y, Jhun BS, et al. Role of mitochondrial Ca2+ homeostasis in cardiac muscles. Arch Biochem Biophys. 2019;663:276–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dewenter M, von der Lieth A, Katus HA, Backs J. Calcium signaling and transcriptional regulation in cardiomyocytes. Circ Res. 2017;121:1000–20.

    Article  CAS  PubMed  Google Scholar 

  67. Atar D, Backx PH, Appel MM, Gao WD, Marban E. Excitation-transcription coupling mediated by zinc influx through voltage-dependent calcium channels. J Biol Chem. 1995;270:2473–7.

    Article  CAS  PubMed  Google Scholar 

  68. Benitah JP, Gomez AM, Virsolvy A, Richard S. New perspectives on the key role of calcium in the progression of heart disease. J Muscle Res Cell Motil. 2003;24:275–83.

    Article  CAS  PubMed  Google Scholar 

  69. Hamdan M, Urien S, Le LH, Tillement JP, Morin D. Inhibition of mitochondrial carnitine palmitoyltransferase-1 by a trimetazidine derivative, S-15176. Pharmacol Res. 2001;44:99–104.

    Article  CAS  PubMed  Google Scholar 

  70. Mellstrom B, Savignac M, Gomez-Villafuertes R, Naranjo JR. Ca2+-operated transcriptional networks: molecular mechanisms and in vivo models. Physiol Rev. 2008;88:421–49.

    Article  CAS  PubMed  Google Scholar 

  71. Abrenica B, Gilchrist JS. Nucleoplasmic Ca2+loading is regulated by mobilization of perinuclear Ca2+. Cell Calcium. 2000;28:127–36.

    Article  CAS  PubMed  Google Scholar 

  72. Abrenica B, Pierce GN, Gilchrist JS. Nucleoplasmic calcium regulation in rabbit aortic vascular smooth muscle cells. Can J Physiol Pharmacol. 2003;81:301–10.

    Article  CAS  PubMed  Google Scholar 

  73. Echevarria W, Leite MF, Guerra MT, Zipfel WR, Nathanson MH. Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum. Nat Cell Biol. 2003;5:440–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chi TH, Crabtree GR. Perspectives: signal transduction. Inositol phosphates in the nucleus. Science. 2000;287:1937–9.

    Article  CAS  PubMed  Google Scholar 

  75. Zima AV, Bare DJ, Mignery GA, Blatter LA. IP3-dependent nuclear Ca2+ signalling in the mammalian heart. J Physiol. 2007;584:601–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hardingham GE, Chawla S, Johnson CM, Bading H. Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature. 1997;385:260–5.

    Article  CAS  PubMed  Google Scholar 

  77. Dolmetsch RE, Xu K, Lewis RS. Calcium oscillations increase the efficiency and specificity of gene expression. Nature. 1998;392:933–6.

    Article  CAS  PubMed  Google Scholar 

  78. Bkaily G, Avedanian L, Jacques D. Nuclear membrane receptors and channels as targets for drug development in cardiovascular diseases. Can J Physiol Pharmacol. 2009;87:108–19.

    Article  CAS  PubMed  Google Scholar 

  79. Hegyi B, Bers DM, Bossuyt J. CaMKII signaling in heart diseases: emerging role in diabetic cardiomyopathy. J Mol Cell Cardiol. 2019;127:246–59.

    Article  CAS  PubMed  Google Scholar 

  80. Ljubojevic S, Radulovic S, Leitinger G, Sedej S, Sacherer M, Holzer M, et al. Early remodeling of perinuclear Ca2+ stores and nucleoplasmic Ca2+ signaling during the development of hypertrophy and heart failure. Circulation. 2014;130:244–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bkaily G, Nader M, Avedanian L, Choufani S, Jacques D, D’Orléans-Juste P. G-protein-coupled receptors, channels, and Na+-H+ exchanger in nuclear membranes of heart, hepatic, vascular endothelial, and smooth muscle cells. Can J Physiol Pharmacol. 2006;84:431–41.

    Article  CAS  PubMed  Google Scholar 

  82. Bossuyt J, Helmstadter K, Wu X, Clements-Jewery H, Haworth RS, Avkiran M, et al. Ca2+ /calmodulin-dependent protein kinase II delta and protein kinase D overexpression reinforce the histone deacetylase 5 redistribution in heart failure. Circ Res. 2008;102:695–702.

    Article  CAS  PubMed  Google Scholar 

  83. Wu H, Naya FJ, McKinsey TA, Mercer B, Shelton JM, Chin ER, et al. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J. 2000;19:1963–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang T, Kohlhaas M, Backs J, Mishra S, Phillips W, Dybkova N, et al. CaMKIIdelta isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses. J Biol Chem. 2007;282:35078–87.

    Article  CAS  PubMed  Google Scholar 

  85. Pereira L, Ruiz-Hurtado G, Morel E, Laurent AC, Métrich M, Domínguez-Rodríguez A, et al. Epac enhances excitation-transcription coupling in cardiac myocytes. J Mol Cell Cardiol. 2012;52:283–91.

    Article  CAS  PubMed  Google Scholar 

  86. Backs J, Song K, Bezprozvannaya S, Chang S, Olson EN. CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest. 2006;116:1853–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. McKinsey TA, Zhang CL, Olson EN. Activation of the myocyte enhancer factor-2 transcription factor by Ca2+ /calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci U S A. 2000;97:14400–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Colella M, Grisan F, Robert V, Turner JD, Thomas AP, Pozzan T. Ca2+ oscillation frequency decoding in cardiac cell hypertrophy: role of calcineurin/NFAT as Ca2+ signal integrators. Proc Natl Acad Sci U S A. 2008;105:2859–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Molkentin JD. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res. 2004;63:467–75.

    Article  CAS  PubMed  Google Scholar 

  90. Timmerman LA, Clipstone NA, Ho SN, Northrop JP, Crabtree GR. Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosuppression. Nature. 1996;383:837–40.

    Article  CAS  PubMed  Google Scholar 

  91. Hallhuber M, Burkard N, Wu R, Buch MH, Engelhardt S, Hein L, et al. Inhibition of nuclear import of calcineurin prevents myocardial hypertrophy. Circ Res. 2006;99:626–35.

    Article  CAS  PubMed  Google Scholar 

  92. Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature. 1997;386:855–8.

    Article  CAS  PubMed  Google Scholar 

  93. Gomez-Ospina N, Tsuruta F, Barreto-Chang O, Hu L, Dolmetsch R. The C terminus of the L-type voltage-gated calcium channel Ca(V)1.2 encodes a transcription factor. Cell. 2006;127:591–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chung HJ, Jan LY. Channeling to the nucleus. Neuron. 2006;52:937–40.

    Article  CAS  PubMed  Google Scholar 

  95. Bers DM. Ca2+-calmodulin-dependent protein kinase II regulation of cardiac excitation- transcription coupling. Heart Rhythm. 2011;8:1101–4.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ozcelikay AT, Chapman D, Elimban V, Dhalla NS. Role of intracellular Ca2+-overload in inducing changes in cardiac gene expression. Curr Res Cardiol. 2014;1:13–6.

    Article  Google Scholar 

Download references

Acknowledgements

The infrastructural support for the work presented in this article was provided by the St. Boniface Hospital Research Foundation. Dr. Nusier is a Visiting Professor from Jordan University of Science and Technology, School of Medicine, Department of Physiology and Biochemistry, Jordan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naranjan S. Dhalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhalla, N.S., Nusier, M., Shah, A.K., Tappia, P.S. (2023). Characteristics of Intracellular Ca2+ Handling Proteins in Heart Function in Health and Disease. In: Tripathi, O.N., Quinn, T.A., Ravens, U. (eds) Heart Rate and Rhythm. Springer, Cham. https://doi.org/10.1007/978-3-031-33588-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33588-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33587-7

  • Online ISBN: 978-3-031-33588-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics