Skip to main content
Log in

Statistical strategy for stereospecific hydrogen NMR assignments: Validation procedures for the floating prochirality method

  • Research Papers
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

We examine the statistical and other considerations which determine the validity and reproducibility of stereospecific hydrogen NMR assignments obtained by the floating prochirality method. In this method, the assignment of a prochiral configuration of hydrogens at selected centers is allowed to ‘float’ during the structure refinement, and the distribution of prochiral orientations in highly refined structures is subjected to statistical analysis. The underlying statistical basis for this approach is examined and potential limitations of current approaches are identified. As an example, approximately 1300 distance constraints obtained from NOESY spectra of oxidized horse cytochrome c have been used to examine several computational strategies. Repeated calculations were done by several different methods on both the whole molecule (104 residues plus heme) and on a 23-residue fragment containing two helices, a turn, and flanking residues. The results show that, even with NOE constraints alone, one third of the centers may be reproducibly assigned, provided appropriate precautions are taken. These precautions include adjustments for multiple statistical comparisons and characterization of statistical interactions between prochiral centers. The analysis demonstrates that inadequately constrained systems, such as fragments from a larger molecule, may produce misleading results, raising concerns about methods which rely solely on intraresidue and sequential interresidue contraints. A mathematical model describing interactions among prochiral centers is described and validated, and protocols for assignment and statistical validation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Billeter M., Qian Y., Otting G., Muller M., Gehring W.J. and Wüthrich K. (1990) J. Mol. Biol., 214, 183–197.

    Google Scholar 

  • Braun W. and Gō N. (1985) J. Mol. Biol., 186, 611–626.

    Google Scholar 

  • Crippen G.M. (1978) J. Comp. Phys., 26, 449–452.

    Google Scholar 

  • Crippen G.M. and Havel T.F. (1978) Acta Crystallogr., A34, 282–284.

    Google Scholar 

  • Feng Y., Roder H., Englander S.W., Wand A.J. and Di Stefano D.L. (1989) Biochemistry, 28, 195–203.

    Google Scholar 

  • Güntert P., Braun W., Billeter M. and Wüthrich K. (1989) J. Am. Chem. Soc., 111, 3997–4004.

    Google Scholar 

  • Güntert P., Braun W. and Wüthrich K. (1991) J. Mol. Biol., 217, 517–530.

    Google Scholar 

  • Havel T.F. (1991) Prog. Biophys. Molec. Biol., 56, 43–78.

    Google Scholar 

  • Havel T.F., Kuntz I.D. and Crippen G.M. (1983) Bull. Math. Biol., 45, 665–720.

    Google Scholar 

  • Hyberts S.G., Märki W. and Wagner G. (1987) Eur. J. Biochem., 164, 625–635.

    Google Scholar 

  • Karplus M. (1959) J. Chem. Phys., 30, 11–15.

    Google Scholar 

  • Korszun Z.R., Bunker G., Khalid S., Scheidt W.R., Cusanovich M.A. and Meyer T.E. (1989) Biochemistry, 28, 1513–1517.

    Google Scholar 

  • Korszun Z.R., Moffat K., Frank K. and Cusanovich M.A. (1982) Biochemistry, 21, 2253–2258.

    Google Scholar 

  • Macura S. and Ernst R.R. (1980) Mol. Phys., 41, 95–117.

    Google Scholar 

  • Mathews D.E. and Farewell V.T. (1988) Using and Understanding Medical Statistics, 2nd edition, S. Karger AG, Basel, pp. 20–38.

    Google Scholar 

  • Momany F.A., McGuire R.F., Burgess A.W. and Scheraga H.A. (1975) J. Phys. Chem., 79, 2361–2381.

    Google Scholar 

  • Nèmethy G., Pottle M.S. and Scheraga H.A. (1983) J. Phys. Chem., 87, 1883–1887.

    Google Scholar 

  • Nerdal W., Hare D.R. and Reid B.R. (1988) J. Mol. Biol., 201, 717–721.

    Google Scholar 

  • Neri D., Szperski T., Otting G., Senn H. and Wüthrich K. (1989) Biochemistry, 28, 7510–7516.

    Google Scholar 

  • Nilges M., Clore G.M. and Gronenborn A.M. (1990) Biopolymers, 29, 813–822.

    Google Scholar 

  • Ryckaert J.P., Ciccotti G. and Berendsen H.J.C. (1977) J. Comp. Phys., 23, 327–341.

    Google Scholar 

  • Sattler M., Schwalbe H. and Griesinger C. (1992) J. Am. Chem. Soc., 114, 1126–1127.

    Google Scholar 

  • Singh U.C., Weiner P.K., Caldwell J.W. and Kollman P.A. (1986) Amber 3.0 University of California, San Francisco.

    Google Scholar 

  • Weber P.L., Morrison R. and Hare D. (1988) J. Mol. Biol., 204, 483–487.

    Google Scholar 

  • Wüthrich K., Billeter M. and Braun W. (1983) J. Mol. Biol., 169, 949–961.

    Google Scholar 

  • Zuiderweg E.R.P., Boelens R. and Kaptein R. (1985) Biopolymers, 24, 601–611.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beckman, R.A., Litwin, S. & Wand, A.J. Statistical strategy for stereospecific hydrogen NMR assignments: Validation procedures for the floating prochirality method. J Biomol NMR 3, 675–700 (1993). https://doi.org/10.1007/BF00198371

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198371

Keywords

Navigation