Skip to main content
Log in

Estimating hydrogen bond energies: comparison of methods

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Hydrogen bonds are among the most important non-bonded interactions found in molecules. Different methods of estimating the strength of hydrogen bonds have been proposed to date. In this work, we present a comparison between methods of estimating hydrogen bond energies that are based on several electron density descriptors based on the quantum theory of atoms in molecules, the natural bond orbital theory, and Mulliken population analysis. The results indicate that the most powerful approach is based on the quantum theory of atoms in molecules, followed by the one employing the natural bond orbital theory. The Mulliken population analysis performed very poorly. The effect of including dispersion correction was also studied. Parameters for predicting hydrogen bond energies are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arunan E, Desiraju GR, Klein Ra, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Pure Appl Chem 83(8):1637

    CAS  Google Scholar 

  2. Arunan E, Desiraju GR, Klein Ra, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Pure Appl Chem 83(8):1619

    CAS  Google Scholar 

  3. Desiraju GR (2002) Acc Chem Res 35(7):565

    Article  CAS  Google Scholar 

  4. Deechongkit S, Nguyen H, Powers ET, Dawson PE, Gruebele M, Kelly JW (2004) Nature 430(6995):101

    Article  CAS  Google Scholar 

  5. Rose GD, Fleming PJ, Banavar JR, Maritan A (2006) Proc Natl Acad Sci USA 103(45):16623

    Article  CAS  Google Scholar 

  6. Hellgren M, Kaiser C, Haij S, Norberg Å, Höög JO (2007) Cell Mol Life Sci 64(23):3129

    Article  CAS  Google Scholar 

  7. Davidson ER (1967) J Chem Phys 46(9):3320

    CAS  Google Scholar 

  8. Roby KR (1974) Mol Phys 27(1):81

    Article  CAS  Google Scholar 

  9. Ehrhardt C, Ahlrichs R (1985) Theor Chim Acta 68(3):231

    Article  CAS  Google Scholar 

  10. Reiher M, Sellmann D, Hess BA (2001) Theor Chem Acc 106(6):379

    Article  CAS  Google Scholar 

  11. Thar J, Kirchner B (2006) J Phys Chem A 110(12):4229

    CAS  Google Scholar 

  12. Schmidt M, Zahn S, Carella M, Ohlenschläger O, Görlach M, Kothe E, Weston J (2008) ChemBioChem 9(13):2135

    Article  CAS  Google Scholar 

  13. Schenk S, Le Guennic B, Kirchner B, Reiher M (2008) Inorg Chem 47(9):3634

    Article  CAS  Google Scholar 

  14. Grabowski SJ (2001) J Phys Chem A 105(47):10739

    CAS  Google Scholar 

  15. Gora RW, Grabowski SJ, Leszczynski J (2005) J Phys Chem A 109(29):6397

    CAS  Google Scholar 

  16. Parthasarathi R, Subramanian V, Sathyamurthy N (2005) J Phys Chem A 109(5):843

    CAS  Google Scholar 

  17. Parthasarathi R, Subramanian V, Sathyamurthy N (2006) J Phys Chem A 110(10):3349

    CAS  Google Scholar 

  18. Gatti C, Saunders VR, Roetti C (1994) J Chem Phys 101(12):10686

    CAS  Google Scholar 

  19. Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  20. Bader RFW (1991) Chem Rev 91(5):893

    Article  CAS  Google Scholar 

  21. Glendening ED, Landis CR, Weinhold F (2012) Wiley Interdiscip Rev Comput Mol Sci 2(1):1

  22. Mulliken RS (1955) J Chem Phys 23(10):1833

    CAS  Google Scholar 

  23. Grabowski S (2000) J Mol Struct 553(1–3):151

    Article  CAS  Google Scholar 

  24. Alkorta I, Elguero J (1998) Chem Soc Rev 27:163

    Article  CAS  Google Scholar 

  25. Wiberg K (1968) Tetrahedron 24(3):1083

    Article  CAS  Google Scholar 

  26. Reed AE, Weinhold F (1983) J Chem Phys 78(6):4066

    CAS  Google Scholar 

  27. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83(2):735

    CAS  Google Scholar 

  28. Scheiner S (2007) Calculating the properties of hydrogen bonds by ab initio methods. John Wiley & Sons Inc, New York

    Google Scholar 

  29. Jeziorski B, Szalewicz K (2002) Intermolecular interactions by perturbation theory. Wiley, New York

    Google Scholar 

  30. Becke AD (1993) J Chem Phys 98(7):5648

    CAS  Google Scholar 

  31. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  32. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58(8):1200

    Article  CAS  Google Scholar 

  33. Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97(4):2571

    Google Scholar 

  34. Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100(8):5829

    Google Scholar 

  35. Boys S, Bernardi F (1970) Mol Phys 19(4):553

    Article  CAS  Google Scholar 

  36. Simon S, Duran M, Dannenberg JJ (1996) J Chem Phys 105(24):11024

    CAS  Google Scholar 

  37. Grimme S (2006) J Comput Chem 27(15):1787

    Article  CAS  Google Scholar 

  38. Chai JD, Head-Gordon M (2008) J Chem Phys 128(8):084106

    Google Scholar 

  39. Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615

    Article  CAS  Google Scholar 

  40. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  41. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153(6):503

    CAS  Google Scholar 

  42. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166(3):275

    CAS  Google Scholar 

  43. Dunning TH (1989) J Chem Phys 90(2):1007–1023

  44. Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96(9):6796–6806

  45. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision D.01. Gaussian Inc., Wallingford

  46. Hanwell M, Curtis D, Lonie D, Vandermeersch T, Zurek E, Hutchison G (2012) J Cheminform 4(1):1

    Article  Google Scholar 

  47. Ayoub AT, Craddock TJA, Klobukowski M, Tuszynski J (2014) Biophys J (in press)

Download references

Acknowledgments

M.K. thanks the Natural Sciences and Engineering Research Council (NSERC) for continuing support. J.T. appreciates the support of the Allard Foundation, NSERC, and the Canadian Breast Cancer Foundation. This research has been enabled by the use of computing resources provided by WestGrid and Compute/Calcul Canada as well as the PharmaMatrix Cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Klobukowski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2014_1520_MOESM1_ESM.pdf

Tables showing the hydrogen bond energies as well as the values of the different descriptors for all hydrogen-bonded systems are shown in Supplementary Material. The coordinates of all the minimized structures are shown as well. (pdf 93 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayoub, A.T., Tuszynski, J. & Klobukowski, M. Estimating hydrogen bond energies: comparison of methods. Theor Chem Acc 133, 1520 (2014). https://doi.org/10.1007/s00214-014-1520-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1520-7

Keywords

Navigation