Skip to main content
Log in

TTX sensitive plateau potentials in the crayfish slowly adapting stretch receptor neuron

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

Electrophysiological experiments showed that a tetrodotoxin (TTX) sensitive slowly inactivating Na+ current contributed to the excitability of the sensory neuron (SN1) that innervates the slow receptor muscle in the abdominal muscle receptor (MR1) of crayfish, Procambarus clarkii. Following either tetraethylammonium (TEA) blockage of the K+ delayed rectifier currents or exposure to high temperature, a depolarizing plateau potential was evoked by the slow Na+ current. Ca++ substitution by other divalent cations had no effect on the plateau potential, demonstrating that Ca++ is not involved in plateau potential genesis. Simultaneous intrasomatic and extraaxonic recordings coupled with 4-aminopyridine (4-AP) exposure indicated that the slowly inactivating Na+ current is primarily somatic, and does not contribute significantly to spiking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

4-AP :

4-aminopyridine

HAP :

hyperpolarizing after-potential

MR1 :

slowly adapting muscle receptor organ

SR1 :

sensory neuron of MR1

TEA :

tetraethylammonium

TTX :

tetrodotoxin

References

  • Albuquerque EX, Grampp W (1968) Effects of tetrodotoxin on the slowly adapting stretch receptor neurone of lobster. J Physiol (Lond) 195:141–156

    Google Scholar 

  • Alexandrowicz JS (1967) Receptor organs in thoracic and abdominal muscles of Crustacea. Biol Rev 42:288–326

    Google Scholar 

  • Barrio LC, Buño W (1990) Dynamic analysis of sensory-inhibitory interactions in crayfish stretch receptors. J Neurophysiol 63:1508–1518

    Google Scholar 

  • Barrio LC, Buño W, Clarac F (1989) Plateau de dépolarisation bloqué par la TTX dans le récepteur d'étirement abdominal de l'écrevisse. Arch Int Physiol Biochem 97:4, A 104

    Google Scholar 

  • Brachi RL (1987) Sodium channel diversity subtle variations on a complex theme. Trends Neurosci 10:221–223

    Google Scholar 

  • Brown MC, Ottoson D, Rydqvist R (1978) Crayfish Stretch receptor: an investigation with voltage-clamp and ion-sensitive electrodes. J Physiol (Lond) 284:55–179

    Google Scholar 

  • Buño W, Fuentes J, Barrio LC (1987) Modulation of pacemaker activity by IPSP and brief length perturbations in the crayfish stretch receptor. J Neurophysiol 57:819–834

    Google Scholar 

  • Calvin WH, Hartline DK (1977) Retrograde invasion of lobster stretch receptor somata in the control of firing rate and extra spike patterning. J Neurophysiol 40:106–118

    Google Scholar 

  • Colmers WF, Lewis DV, Wilson WA (1982) Cs+ loading reveals Na+-dependent persistent inward cu and negative slope resistance in Aplysia giant neurons. J Neurophysiol 48:1191–1200

    Google Scholar 

  • Connor JA, Stevens CF (1971) Voltage clamp studies of a transient outward current in gastropod somata. J Physiol (Lond) 213:21–30

    Google Scholar 

  • Connors BW, Gutnik MJ, Prince DA (1982) Electrophysiological properties of neocortical neurons in vitro. J Neurophysiol 48:1302–1320

    Google Scholar 

  • Dubois DM, Bergman C (1975) Late sodium current in the node of Ranvier. Pflügers Arch 357:145–148

    Google Scholar 

  • Edeman A, Grampp W (1989) Ion permiation through hyper-polarization-activated membrane channels (Q-channels) in the lobster stretch receptor. Pflügers Arch 413:249–255

    Google Scholar 

  • Eyzaguirre C, Kuffler SW (1955) Process of excitation in dendrites and in soma of single isolated sensory nerve cells of lobster and crayfish. J Gen Physiol 39:87–119

    Google Scholar 

  • Florey E (1956) Adaptationserscheinungen in den sensiblen Neuronen der Streckreceptoren des Flusskrebses. J Naturforsch B 11:504–513

    Google Scholar 

  • Gestrelius S, Grampp W (1983) Kinetics of TEA and 4-AP sensitive K current in the slowly adapting lobster stretch receptor neuron. Acta Physiol Scand 118:135–140

    Google Scholar 

  • Gestrelius S, Grampp W, Sjolin L (1981) Subthreshold and near threshold membrane currents in lobster stretch receptor neurones. J Physiol (Lond) 310:191–203

    Google Scholar 

  • Gestrelius S, Grampp W, Sjolin L (1983) Kinetics of the TTX sensitive Na current in the slowly adapting lobster stretch receptor neurone. Acta Physiol Scand 118:135–140

    Google Scholar 

  • Gilly WF, Armstrong CM (1984) Threshold channels: a novel type of sodium channels in the squid axon. Nature 309:448–450

    Google Scholar 

  • Grampp W (1966) Firing with multiple-spike discharges in the slowly adapting stretch receptor neuron of the lobster. Acta Physiol Scand 66:484–450

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117:500–544

    Google Scholar 

  • Klie JW, Wellhoner HH (1973) Voltage clamp studies on the stretch response in the neuron of the slowly adapting crayfish stretch receptor. Pflügers Arch 342:93–104

    Google Scholar 

  • Llinás R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol (Lond) 305:197–213

    Google Scholar 

  • Marchiafava PL (1970) The effect of temperature change on the membrane potential and conductance in Aplysia giant nerve cell. Comp Bichem Physiol 34:847–852

    Google Scholar 

  • Moser H, Ottoson D, Rydqvist B (1979) Step-like shifts of membrane potential in the stretch receptor neuron of the crayfish (Astacus fluviatilis) at high temperatures. J Comp Physiol 133:257–265

    Google Scholar 

  • Nakajima S, Onodera K (1969) Membrane properties of the stretch receptor neurones of crayfish with particular reference to mechanisms of sensory adaptation. J Physiol (Lond) 200:161–185

    Google Scholar 

  • Ono T, Nakajima S (1979) Effect of temperature and deuterium oxide on crustacean stretch receptor. J Neurophysiol 42:1680–1691

    Google Scholar 

  • Rocha AF, Buño W (1985) Sustained sensitivity modifications induced by brief length perturbations in crayfish slowly adapting stretch receptor. J Neurobiol 16:377–388

    Google Scholar 

  • Rudy B (1978) Slow inactivation of sodium conductance in the squid giant axons. Pronase resistance. J Physiol (Lond) 283:1–21

    Google Scholar 

  • Rusinov VS, Ezrokhy VL (1967) Local and spread in excitation in different parts of stretch receptor neurons in Crustacea. Sechenov Physiol J (USSR) 7:777–783

    Google Scholar 

  • Shoukimas JJ, French RJ (1980) Incomplete inactivation of sodium current in non perfused squid axon. Biophys J 32:857–862

    Google Scholar 

  • Sokolove PG, Cooke IM (1971) Inhibition of impulse activity in a sensory neuron by electrogenic pump. J Gen Physiol 57:125–163

    Google Scholar 

  • Staftstrom CE, Schwindt PC, Crill WE (1982) Negative slope conductance due to a persistent subthreshold sodium current in cat neocortical neurons in vitro. Brain Res 236:221–226

    Google Scholar 

  • Staftstrom CE, Schwindt PC, Flatman J, Crill WE (1984) Properties of subthreshold response and action potential recorded in layer V neurons from cat sensorimotor cortex in vitro. J Neurophysiol 52:244–263

    Google Scholar 

  • Staftstrom CE, Schwindt PC, Chubb MC, Crill WE (1985) Properties of persistent sodium conductance of layer V neurons from cat sensorymotor cortex in vitro. J Neurophysiol 53:153–170

    Google Scholar 

  • Van Harreveld A (1936) A physiological solution for fresh water crustaceans. Proc Soc Exp Biol Med 34:428–432

    Google Scholar 

  • Weiss RE, Horn R (1986) Functional differences of two classes of sodium channels in developing rat skeletal muscle. Science (NY) 233:361–364

    Google Scholar 

  • Yawo H, Kojima H, Kuno M (1986) Low-threshold slow-inactivating Na potential in the cockroach giant axon. J Neurophysiol 54:1087–1100

    Google Scholar 

  • Yeh JZ, Oxford GS, Wu CH, Narahashi T (1976) Dynamics of aminopyridine block of potassium channels in squid axon membrane. J Gen Physiol 68:519–535

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrio, L.C., Clarac, F. & Buño, W. TTX sensitive plateau potentials in the crayfish slowly adapting stretch receptor neuron. J Comp Physiol A 168, 313–321 (1991). https://doi.org/10.1007/BF00198351

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198351

Key words

Navigation