Skip to main content
Log in

Mechanism of signal production in the vibratory communication of the wandering spider Cupiennius getazi (Arachnida, Araneae)

  • Original Papers
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The communication with substrate vibrations produced by vibrations of the body or its appendages is widespread among arthropods, especially among spiders. Its biomechanics, however, is poorly understood. Males of the wandering spider Cupiennius getazi produce such substrate vibrations during courtship by means of dorsoventral movements of their opisthosoma without hitting their dwelling plant.

Simultaneous recordings of the plant vibrations (accelerometry), of the opisthosoma movements (laser Doppler vibrometry) and of the electromyograms of the opisthosomal depressor muscle, revealed that the main frequency of the vibratory signal of about 80 Hz originates from the activity of the opisthosomal depressor muscle. The transfer functions of the spider's body show resonances which could amplify the main frequency before it is transmitted into the plant.

A low frequency component of the opisthosomal movement (duration c. 0.3 s, displacement c. 6 mm (peak-peak) ≡ 30° deflection angle, frequency 10–20 Hz) can be distinguished from a main frequency component (duration c. 0.1 s, displacement c. 0.5 mm ≡ 2.5° deflection angle, frequency c. 80 Hz). The main frequency component is superimposed on an upward movement of the low frequency component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aicher B, Markl H, Masters WM, Kirschenlohr HL (1983) Vibration transmission through the walking legs of the fiddler crab, Uca pugilator (Brachyura, Ocypodidae) as measured by laser Doppler vibrometry. J Comp Physiol 150:483–491

    Google Scholar 

  • Barth FG (1982) Spiders and vibratory signals: sensory reception and behavioral significance. In: Witt P, Rovner JS (eds) Spider communication. Mechanisms and ecological significance. Princeton University Press, Princeton, pp 67–122

    Google Scholar 

  • Barth FG (1985) Neuroethology of the spider vibration sense. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 203–229

    Google Scholar 

  • Barth FG (1993) Sensory guidance in spider pre-copulatory behaviour. Comp Biochem Physiol 104A:717–733

    Google Scholar 

  • Barth FG, Schmitt A (1991) Species recognition and species isolation in wandering spiders (Cupiennius spp.; Ctenidae). Behav Ecol Sociobiol 29:333–339

    Google Scholar 

  • Barth FG, Seyfarth E-A (1979) Cupiennius salei Keys. (Araneae) in the highlands of central Guatemala. J Arachnol 7:255–263

    Google Scholar 

  • Barth FG, Seyfarth E-A, Bleckmann H, Schüch W (1988a) Spiders of the genus Cupiennius Simon 1891 (Araneae, Ctenidae). I. Range distribution, dwelling plants, and climatic characteristics of the habitats. Oecologia 77:187–193

    Google Scholar 

  • Barth FG, Bleckmann H, Bohnenberger J, Seyfarth E-A (1988b) Spiders of the genus Cupiennius Simon 1891 (Araneae, Ctenidae). II. On the vibratory environment of a wandering spider. Oecologia 77:194–201

    Google Scholar 

  • Baurecht D, Barth FG (1992) Vibratory communication in spiders. I. Representation of male courtship signals by female vibration receptor. J Comp Physiol A 171:231–243

    Google Scholar 

  • Baurecht DK, Deutsch WA, Noll A, Barth FG (1989) Digital signal processing system: recording, analysis, synthesis and replay in bioacoustical experiments. Elsner N, Singer W (eds) Dynamics and plasticity in neuronal systems. Thieme, Stuttgart New York, p 141

    Google Scholar 

  • Böck P (ed) (1989) Romeis. Mikroskopische Technik. Urban & Schwarzenberg, München Wien Baltimore

    Google Scholar 

  • Brown RB (1939) The musculatur of Agelena naevia. J Morphol 64:115–166

    Google Scholar 

  • Ewing AW (1989) Arthropod bioacoustics. Neurobiology and behaviour. Cornell University Press, Ithaca

    Google Scholar 

  • Gogala M (1985) Vibrational communication in insects (Biophysical and behavioural aspects). In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Parey, Berlin Hamburg, pp 117–126

    Google Scholar 

  • Hedwig B, Knepper M (1992) NeuroLab 6.0 — A versatile program for the analysis of neurobiological data. In: Elsner N, Richter W (eds) Rhythmogenesis in neurons and networks. Thieme, Stuttgart New York, p 752

    Google Scholar 

  • Lachmuth U, Grasshoff M, Barth FG (1984) Taxonomische Revision der Gattung Cupiennius Simon 1891 (Arachnida: Araneae: Ctenidae). Senckenbergiana biol 65:329–372

    Google Scholar 

  • Leppla G (1985) Die Balz von Cupiennius getazi und Cupiennius foliatus. Diplomarbeit, Universität Frankfurt am Main

  • Lewin A, Mohr F, Selbach H (1990) Heterodyn-Interferometer zur Vibrationsanalyse. Technisches Messen 57:335–345

    Google Scholar 

  • Maddison WP, Stratton GE (1988) Sound production and associated morphology in male jumping spiders of the Habronattus agilis species group (Araneae, Salticidae). J Arachnol 16:199–211

    Google Scholar 

  • Markl H (1969) Verständigung durch Vibrationssignale bei Arthropoden. Naturwissenschaften 56:499–505

    Google Scholar 

  • Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin Heidelberg, pp 332–353

    Google Scholar 

  • Michelsen A (1983) Biophysical basis of sound communication. In: Lewis B (ed) Bioacoustics. A comparative approach. Academic Press, London etc, pp 3–38

    Google Scholar 

  • Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281

    Google Scholar 

  • Palmgren P (1978) On the muscular anatomy of spiders. Acta Zool Fenn 155:1–41

    Google Scholar 

  • Palmgren P (1980) Some comments on the anatomy of spiders. Ann Zool Fenn 17:161–173

    Google Scholar 

  • Rathmayer W (1965a) Polyneuronale Innervation bei Spinnen. Naturwissenschaften 52:114–116

    Google Scholar 

  • Rathmayer W (1965b) Die Innervation der Beinmuskeln einer Spinne, Eurypelma hentzi Chamb. (Orthognatha, Aviculariidae). Verh Dtsch Zool Ges 1965:505–511

    Google Scholar 

  • Robinson GL, Paim U (1969) Opisthosomal musculature of female Araneus diadematus (Araneae, Argiopidae). Can Entomol 101:337–352

    Google Scholar 

  • Roth E (1986) Vibratorische Balz von Cupiennius coccineus: zur ethologischen Bedeutung der Signale. Diplomarbeit, Universität Frankfurt am Main

  • Rovner JS, Barth FG (1981) Vibratory communication through living plants by a tropical wandering spider. Science 214:464–466

    Google Scholar 

  • Schmitt A, Schuster M, Barth FG (1990) Daily locomotor activity patterns in three species of Cupiennius (Araneae, Ctenidae): the males are the wandering spiders. J Arachnol 18:249–255

    Google Scholar 

  • Schmitt A, Schuster M, Barth FG (1992) Male competition in a wandering spider (Cupiennius getazi, Ctenidae). Ethology 90:293–306

    Google Scholar 

  • Schmitt A, Friedel T, Barth FG (1993) Importance of pause between spider courtship vibrations and general problems using synthetic stimuli in behavioural studies. J Comp Physiol A 172:707–714

    Google Scholar 

  • Schmitt A, Schuster M, Barth FG (1994) Vibratory communication in a wandering spider (Cupiennius getazi, Ctenidae): Female and male preferences for various features of the conspecific male's releaser. Anim Behav 48 (in press)

  • Schüch W, Barth FG (1985) Temporal patterns in the vibratory courtship signals of the wandering spider Cupiennius salei Keys. Behav Ecol Sociobiol 16:263–271

    Google Scholar 

  • Schüch W, Barth FG (1990) Vibratory communication in a spider: female responses to synthetic male vibrations. J Comp Physiol A 166:817–826

    Google Scholar 

  • Schuster M (1993) Konkurrenz und Kommunikation. Verhaltensstudien an Spinnen der Gattung Cupiennius (Araneae). Dissertation, Universität Wien

  • Seyfarth E-A (1980) Daily patterns of locomotor activity in a wandering spider. Physiol Entomol 5:139–206

    Google Scholar 

  • Uetz GW, Stratton GE (1982) Acoustic communication and reproductive isolation in spiders. In: Witt P, Rovner JS (eds) Spider communication. Mechanisms and ecological significance. Princeton University Press, Princeton, pp 123–159

    Google Scholar 

  • Whitehead WF, Rempel JG (1959) A study of the musculature of the black widow spider, Latrodectus mactans (Fabr.). Can J Zool 37:831–870

    Google Scholar 

  • Wilson RS (1965) The pedicel of the spider Heteropoda venatoria. J Zool 147:38–45

    Google Scholar 

  • Wirth E (1984) Die Bedeutung von Zeitund Amplitudenunterschieden für die Orientierung nach vibratorischen Signalen bei Spinnen. Diplomarbeit, Universität Frankfurt am Main

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dierkes, S., Barth, F.G. Mechanism of signal production in the vibratory communication of the wandering spider Cupiennius getazi (Arachnida, Araneae). J Comp Physiol A 176, 31–44 (1995). https://doi.org/10.1007/BF00197750

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00197750

Key words

Navigation