Skip to main content
Log in

Proton efflux from oat coleoptile cells and exchange with wall calcium after IAA or fusicoccin treatment

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Elongation growth of plant cells occurs by stretching of cell walls under turgor pressure when intermolecular bonds in the walls are temporarily loosened. The acid-growth theory predicts that wall loosening is the result of wall acidification because treatments (including IAA and fusicoccin) that cause lowered wall pH cause elongation. However, conclusive evidence that IAA primarily reduces wall pH has been lacking. Calcium has been reported to stiffen the cell walls. We have used a microelectrode ion-flux measuring technique to observe directly, and non-invasively, the net fluxes of protons and calcium from split coleoptiles of oats (Avena sativa L.) in unbuffered solution. Normal net fluxes are 10 nmol · m−2 · s−1 proton efflux and zero calcium flux. The toxin fusicoccin (1 μM) causes immediate efflux from tissue not only of protons, but also of calcium, about 110 nmol · m−2 · s−1 in each case. The data fit the “weak acid Donnan Manning” model for ion exchange in the cell wall. Thus we associate the known “acid-growth” effect of fusicoccin with the displacement of calcium from the wall by exchange for protons extruded from the cytoplasm. Application of 10 μM IAA causes proton efflux to increase transiently by about 15 nmol · m−2 · s−1 with a lag of about 10 min. The calcium influx decreases immediately to an efflux of about 20 nmol · m−2 · s−1. It appears that auxin too causes an “acid-growth” effect, with extruded protons exchanging for calcium in the cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DFS:

Donnan free space

FC:

fusicoccin

MIFE:

microelectrode ion-flux estimation

WADM:

weak acid Donnan Manning

References

  • Bennet-Clark, T.A. (1956) Salt accumulation and mode of action of auxin. A preliminary hypothesis. In: The chemistry and mode of action of plant growth substances, pp. 284–291, Wain, R.L., Wightman, F., ed. Butterworth, London

    Google Scholar 

  • Brummell, D.A., Hall, J.L. (1987) Rapid cellular responses to auxin and the regulation of growth. Plant Cell Environ. 10, 523–543

    CAS  Google Scholar 

  • Cleland, R.E. (1960) Effect of auxin upon loss of calcium from cell walls. Plant Physiol. 35, 581–584

    Article  PubMed  CAS  Google Scholar 

  • Cleland, R.E. (1971) Cell wall extension. Annu. Rev. Plant Physiol. 22, 197–222

    Article  CAS  Google Scholar 

  • Cleland, R.E., Rayle, D.L. (1977) Reevaluation of the effect of calcium ions on auxin-induced elongation. Plant Physiol. 60, 709–712

    PubMed  CAS  Google Scholar 

  • Cleland, R.E., Virk, S.S., Taylor, D., Björkman, T. (1990) Calcium, cell walls and growth. In: Calcium in plant growth and development, pp. 9–16, Leonard, R.T., Hepler, P.K., ed. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Cleland, R.E., Buckley, G., Nowbar, S., Lew, N.M., Stinemetz, C., Evans, M.L., Rayle, D.L. (1991) The pH profile for acidinduced elongation of coleoptile and epicotyl sections is consistent with the acid-growth theory. Planta 186, 70–74

    PubMed  CAS  Google Scholar 

  • Cohen, J.D., Nadler, K.D. (1976) Calcium requirement for indoleacetic acid-induced acidification by Avena coleoptiles. Plant Physiol. 57, 347–350

    PubMed  CAS  Google Scholar 

  • Felle, H. (1988) Auxin causes oscillations of cytosolic free calcium and pH in Zea mays coleptiles. Planta 174, 495–499

    Article  CAS  Google Scholar 

  • Grant, G.T., Morris, E.R., Rees, D.A., Smith, P.J.C., Thom, D. (1973) Biological interactions between polysaccharides and divalent cations: The egg-box model. FEBS Lett. 32, 195–198

    Article  CAS  Google Scholar 

  • Hager, A., Menzel, H., Krauss, A. (1971) Versuche und hypothese zur primärwirkung des auxins beim streckungswachstum. Planta 100, 47–75

    Article  CAS  Google Scholar 

  • Hoson, T., Masuda, Y., Sone, Y., Misaki, A. (1991) Xyloglucan antibodies inhibit auxin-induced elongation and cell wall loosening of Azuki bean epicotyls but not of oat coleoptiles. Plant Physiol. 96, 551–557

    PubMed  CAS  Google Scholar 

  • Hush, J.M., Newman, I.A., Overall, R.L. (1992) Utilization of the vibrating probe and ion-selective microelectrode techniques to investigate electrophysiological responses to wounding in pea roots. J. Exp. Bot. 43, 1251–1257

    Google Scholar 

  • Inouhe, M., Nevins, D.J. (1991) Inhibition of auxin-induced cell elongation of maize coleoptiles by antibodies specific for cell wall glucanases. Plant Physiol. 96, 426–431

    PubMed  CAS  Google Scholar 

  • Kutschera, U., Schopfer, P. (1985a) Evidence against the acid-growth theory of auxin action. Planta 163, 483–493

    Article  CAS  Google Scholar 

  • Kutschera, U., Schopfer, P. (1985b) Evidence for the acid-growth theory of fusicoccin action. Planta 163, 494–499

    Article  CAS  Google Scholar 

  • Manning, G.S. (1969) Limiting laws and counterion condensation in polyelectrolyte solutions. I. Colligative properties. J. Chem. Phys. 51, 924–933

    Article  CAS  Google Scholar 

  • Marrè, E. (1979) Fusicoccin: A tool in plant physiology. Annu. Rev. Plant. Physiol. 30, 273–288

    Article  Google Scholar 

  • McQueen-Mason, S., Durachko, D.M., Cosgrove, D.J. (1992) Two cell wall associated proteins that induce extension of cell walls. (Abstr.) Plant Physiol. 99, Suppl., 33

    Google Scholar 

  • Newman, I.A. (1963) Electric potentials and auxin translocation in Avena. Aust. J. Biol. Sci. 16, 629–646

    CAS  Google Scholar 

  • Newman, I.A., Kochian, L.V., Grusak, M.A., Lucas, W.J. (1987) Fluxes of H+ and K+ in corn roots: Characterization and stoichiometries using ion-selective microelectrodes. Plant Physiol. 84, 1177–1184

    PubMed  CAS  Google Scholar 

  • Nobel, P.S. (1974) Introduction to biophysical plant physiology, p. 33, W.H. Freeman and Company, San Francisco

    Google Scholar 

  • Rayle, D.L., Cleland, R.E. (1970) Enhancement of wall loosening and elongation by acid solutions. Plant Physiol. 46, 250–253

    PubMed  CAS  Google Scholar 

  • Rayle, D.L. (1989) Calcium bridges are not load-bearing cell-wall bonds in Avena coleoptiles. Planta 178, 92–95

    Article  PubMed  CAS  Google Scholar 

  • Richter, C., Dainty, J. (1989) Ion behavior in plant cell walls. I. Characterization of the Sphagnum russowii cell wall ion exchanger. Can. J. Bot. 67, 451–459

    CAS  Google Scholar 

  • Richter, C., Dainty, J. (1990) Ion behavior in plant cell walls. IV. Selective cation binding by Sphagnum russowii cell walls. Can. J. Bot. 68, 773–781

    Article  CAS  Google Scholar 

  • Ryan, P.R., Newman, I.A., Shields, B. (1990) Ion fluxes in corn roots measured by microelectrodes with ion-specific liquid membranes. J. Membr. Sci. 53, 59–69

    Article  CAS  Google Scholar 

  • Ryan, P.R., Newman, I.A., Arif, I. (1992) Rapid calcium exchange for protons and potassium in cell walls of Chara. Plant Cell Environ. 15, 675–683

    Article  CAS  Google Scholar 

  • Senn, A.P., Goldsmith, M.H.M. (1988) Regulation of electrogenic proton pumping by auxin and fusicoccin as related to the growth of Avena coleoptiles. Plant Physiol. 88, 131–138

    PubMed  CAS  Google Scholar 

  • Sentenac, H., Grignon, C. (1981) A model for predicting ionic equilibrium concentration in cell walls. Plant Physiol. 68, 415–419

    PubMed  CAS  Google Scholar 

  • Schopfer, P. (1989) pH-dependence of extension growth in Avena coleoptiles and its implications for the mechanism of auxin action. Plant Physiol. 90, 202–207

    PubMed  CAS  Google Scholar 

  • Virk, S.S., Cleland, R.E. (1988) Calcium and the mechanical properties of soybean hypocotyl cell walls: Possible role of calcium and protons in cell-wall loosening. Planta 176, 60–67

    Article  CAS  Google Scholar 

  • Virk, S.S., Cleland, R.E. (1990) The role of wall calcium in the extension of cell walls of soybean hypocotyls. Planta 182, 559–564

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I. Arif is currently recieving an AIDAB scholarship. This work was supported by an Australian Research Council grant to I.A. Newman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arif, I., Newman, I.A. Proton efflux from oat coleoptile cells and exchange with wall calcium after IAA or fusicoccin treatment. Planta 189, 377–383 (1993). https://doi.org/10.1007/BF00194434

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00194434

Key words

Navigation