Skip to main content
Log in

Ontogenetic changes in the auditory sensitivity of damselfishes (pomacentridae)

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Psychophysical experiments demonstrated that the hearing abilities of two damselfish species change during ontogeny. Auditory thresholds of four size-groups of juvenile bicolor damselfish. Pomacentrus partitus, and for comparative purposes, three different sized juveniles belonging to a closely related species, P. variablis, were determined through classical conditioning experiments conducted in a standing wave tube. Young juveniles (10–27 days post-metamorphosis) exhibited poor hearing, with detection limens ranging from 54 dB (at 300 Hz) to 15 dB (at 1500 Hz) higher than known adult thresholds. Thresholds decreased exponentially with increasing age, while rapidly approaching adult levels. Youngest juveniles exhibited flat, untuned audiograms, with the appearance of a best frequency and a pattern of increasing acuity progressing in a manner similar to that observed in mammals and birds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banner A (1967) Evidence of sensitivity to acoustic displacements in the lemon shark, Negaprion brevirostris (Poey). In: Cahn PH (ed) Lateral line detectors. Indiana University Press, Bloomington, pp 265–273

    Google Scholar 

  • Banner A (1968) Measurements of the particle velocity and pressure in a shallow bay. J Acoust Soc Am 44: 1741–1742

    Google Scholar 

  • Békésy G von (1947) A new audiometer. Acta Oto-Laryngol 35: 411–422

    Google Scholar 

  • Bertelanffy A von (1938) A quantitative theory of organic growth. Human Biol 10: 181–213

    Google Scholar 

  • Beverton RJH, Holt SJ (1957) On the dynamics of exploited fish populations. Fishery Invest Ser II, vol 19. H.M. Stationary Off. London

    Google Scholar 

  • Blaxter JHS, Denton EJ, Gray JAB (1981) Acoustico-lateralis systems in clupeid fishes. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, New York, pp 39–59

    Google Scholar 

  • Boatright-Horowitz SS, Megela Simmons A (1995) Postmetamorphic changes in auditory sensitivity of the bullfrog midbrain. J Comp Physiol A 177: 577–590

    Google Scholar 

  • Buerkle U (1968) Relation of pure tone thresholds to background noise level in the Atlantic cod (Gadus morhua). J Fish Res Bd Canada 25: 1155–1160

    Google Scholar 

  • Carlier E, Lenoir M, Pujol R (1979) Development of cochlear frequency sensitivity tested by compound action potential tuning curves. Hearing Res 1: 197–201

    Google Scholar 

  • Chapman CJ, Hawkins AD (1973) A field study of hearing in the cod, Gadus morhua. J Comp Physiol 85: 147–167

    Google Scholar 

  • Chapman CJ, Sand O (1974) Field studies of hearing in two species of flatfish Plenronectes platessa and Limanda limanda, Comp Biochem Physiol 47A: 371–385

    Google Scholar 

  • Coombs S, Popper AN ( 1982) Structure and function of the auditory system in the clown knifefish, Notopterus chitala. J Exp Biol 97: 225–239

    Google Scholar 

  • Corwin JT (1981) Morphology of the macula neglecta in sharks of the genus Carcharinus. J Morphol 152: 341–362

    Google Scholar 

  • Corwin JT (1981) Postembryonic production and aging of inner ear hair cells in sharks. J Comp Neurol 201: 541–53

    Google Scholar 

  • Corwin JT (1983) Postembryonic growth of the macula neglecta auditory detector in the ray, Raja clavata: Continual increases in hair cell number, neural convergence, and physiological sensitivity. J Comp Neurol 218: 345–356

    Google Scholar 

  • Denton EJ, Gray JAB (1988) Mechanical factors in the excitation of the lateral line of fishes. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 553–594

    Google Scholar 

  • Eggermont JJ (1991) Maturational aspects of periodicity coding in the cat primary auditory cortex. Hearing Res 51: 45–56

    Google Scholar 

  • Ehret G (1974) Age-dependent hearing loss in normal hearing mice. Naturwissenschaften 61: 112–113

    Google Scholar 

  • Ehret G (1976) Development of absolute auditory thresholds in the house mouse (Mus musculus). J Am Audiol Soc 1: 179–184

    Google Scholar 

  • Ehret G, Romand R (1981) Postnatal development of absolute auditory thresholds in kittens. J Comp Physiol Psychol 95: 304–311

    Google Scholar 

  • Enger PS (1966) Acoustic threshold in goldfish and its relation to the sound source distance. Comp Biochem Physiol 18: 859–868

    Google Scholar 

  • Enger PS, Kalmijn AdJ, Sand O (1989) Behavioral investigations on the functions of the lateral line and inner ear in predation. In: Coombs S, Görner P, Munz H (eds) The mechanosensory lateral line. Springer, New York, pp 575–587

    Google Scholar 

  • Fay RR (1969) Behavioral audiogram for the goldfish. J Aud Res 9: 112–121

    Google Scholar 

  • Fay RR (1974) Masking of tones by noise for the goldfish (Carassius auratus). J Comp Physiol Psychol 87: 708–716

    Google Scholar 

  • Fay RR (1988) Hearing in vertebrates: a psychophysics data book. Hill-Fay Associates, Winnetka, Illinois

    Google Scholar 

  • Frisch K von (1938) Über die Bedeutung des Sacculus und der Lagena für den Gehörsinn der Fische. Z Vergl Physiol 25: 703–747

    Google Scholar 

  • Geal-Dor M, Freeman S, Li G, Sohmer H (1993) Development of hearing in neonatal rats: Air and bone conducted ABR thresholds. Hearing Res 69: 236–242

    Google Scholar 

  • Gray L, Rubel EW (1985) Development of auditory thresholds and frequency difference limens in chickens. In: Gottlieb G, Krosnegor N (eds) Measurement of audition and vision in the 1st year of postnatal life. Ablex Publ Corp Norwood, NJ, pp 145–165

    Google Scholar 

  • Ha SJ (1973) Aspects of sound communication in damselfish, Eupomacentrus partitus (Pisces: Pomacentridae). PhD diss, University of Miami

  • Hawkins AD, MacLennan DN (1976) An acoustic tank for hearing studies on fish. In: Schuijf A, Hawkins A (eds) Sound reception in fish. Elsevier, Amsterdam, pp 149–167

    Google Scholar 

  • Hetherington TE, Lombard RE (1982) Biophysics of underwater hearing in anuran amphibians. J Exp Biol 98: 49–66

    Google Scholar 

  • Jacobs DW, Tavolga WN (1967) Acoustic intensity limens in the goldfish. Anim Behav 15: 324–335

    Google Scholar 

  • Jones WR, Janssen J (1992) Lateral line development and feeding behavior in the mottled sculpin Cottus bairdi (Scorpaeniformes: Cottidae). Copeia 1992: 485–492

    Google Scholar 

  • Jørgensen JM, Mathiesen C (1988) The avian inner ear: continuous production of hair cells in vestibular sensory organs, but not in the auditory papilla. Naturwissenschaften 75: 319–320

    Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 83–130

    Google Scholar 

  • Kalmijn AJ (1989) Functional evolution of lateral line and inner ear sensory systems In: Coombs S, Görner P, Munz H (eds) The mechanosensory lateral line. Springer, New York, pp 187–215

    Google Scholar 

  • Kenyon TN (1994) The significance of sound interception to males of the bicolor damselfish, Pomacentrus partitus, during courtship. Env Biol Fishes 40: 391–405

    Google Scholar 

  • Kenyon TN (1995) Ontogenetic changes in the auditory sensitivity of the bicolor damselfish, Pomacentrus partitus (Poey), PhD diss, Univ of Miami, Miami, FL

    Google Scholar 

  • Lombarte A, Popper AN (1994) Quantitative analyses of postembryonic hair cell addition in the otolthic endorgans of the inner ear of the European hake, Merluccius merluccius (Gadiformes, Teleostei) J Comp Neurol 345: 419–428

    Google Scholar 

  • Mills JH, Schmiedt RA, Kulish LF (1990) Age-related changes in auditory potentials of Mongolian gerbils. Hearing Res 46: 201–210

    Google Scholar 

  • Myrberg AA Jr (1972) Ethology of the bicolor damselfish Eupomacentrus partitus (Pisces: Pomacentridae): a comparative analysis of laboratory and field behavior. Anim Behav Monog 5: 197–283

    Google Scholar 

  • Myrberg AA Jr (1980) Ocean noise and the behavior of marine animals: relationships and implications. In: Diemer FD, Vernberg FJ, Mirkes DZ (eds) Advanced concepts in ocean measurements for marine biology. Univ of South Carolina Press, Columbia, pp 461–491

    Google Scholar 

  • Myrberg AA Jr, Spires JY (1980) Hearing in damselfishes: an analysis of signal detection among closely related species. J Comp Physiol 140: 135–144

    Google Scholar 

  • Myrberg AA Jr, Mohler M. Catala JD (1986) Sound production by males of a coral reef fish (Pomacentrus partitus): its significance to females. Anim Behav 34: 913–923

    Google Scholar 

  • Myrberg AA Jr, Ha SJ, Shamblott M (1993) The sounds of the bicolor damselfish (Pomacentrus partitus): predictors of body size and a spectral basis for individual recognition and assessment. J Acoust Soc Am 94: 3067–3070

    Google Scholar 

  • Offutt GC (1968) Auditory response in the goldfish. J Aud Res 8: 391–400

    Google Scholar 

  • Olsho LW (1986) Early development of human frequency resolution In: van der Water T, Rubel E, Rubens R (eds) Biology of change in otolaryngology. Elsevier, Amsterdam, pp 71–90

    Google Scholar 

  • Parlevescu A (1967) Acoustics of small tanks. In: Tavolga WN (ed) Marine bioacoustics, vol 2. Pergamon Press, Oxford, pp 7–14

    Google Scholar 

  • Pickles JO (1988) An introduction to the physiology of hearing. Academic Press, London

    Google Scholar 

  • Platt C (1977) Hair cell distribution and orientation in goldfish otolith organs. J Comp Neurol 172: 283–298

    Google Scholar 

  • Poggendorf D (1952) Die absoluten Hörschwellen des Zwergwelses (Ameiurus nebulosus) und Beiträge zur Physik des Weberschen Apparates der Ostariophysen. Z Vergl Physiol 34: 222–257

    Google Scholar 

  • Popper AN (1970) Auditory capacities of the Mexican blind cave fish (Astyanax jordani) and its eyed ancestor (Astyanax mexicanus). Anim Behav 18: 552–562

    Google Scholar 

  • Popper AN (1971) The effects of size on the auditory capacities of the goldfish. J Aud Res 11: 239–247

    Google Scholar 

  • Popper AN, Hoxter B (1984) Growth of a fish ear I: Quantitative analysis of sensory hair cell and ganglion cell proliferation. Hearing Res 15: 133–142

    Google Scholar 

  • Popper AN, Hoxter B (1990) Growth of a fish ear II: Locations of newly proliferated sensory hair cells in the saccular epithelium of Astronotus ocellatus. Hearing Res 45: 33–40

    Google Scholar 

  • Roberson DF, Weisleder P, Bohrer PS, Rubel EW (1992) Ongoing production of sensory cells in the vestibular epithelium of the chick. Hearing Res 57: 166–174

    Google Scholar 

  • Romand R (1984) Functional properties of auditory nerve fibers during postnatal development in the kitten. Neurosci Lett 35: 271–276

    Google Scholar 

  • Romand R, Marty R (1975) Postnatal maturation of the cochlear nuclei in the cat: a neurophysiological study. Brain Res 83: 225–233

    Google Scholar 

  • Rubel EW (1978) Ontogeny of structure and function in the vertebrate auditory system. In: Jacobsen M (ed) Handbook of sensory physiology, vol IX. Springer, Berlin Heidelberg New York, pp 135–237

    Google Scholar 

  • Rubel EW, Ryals BM (1983) Development of the place principle: Acoustic trauma. Science 219: 512–514

    Google Scholar 

  • Ruben RJ (1992) The ontogeny of human hearing. Acta Oto-Laryngol 112: 192–196

    Google Scholar 

  • Rübsamen R (1992) Postnatal development of central auditory frequency maps. J Comp Physiol A 170: 129–143

    Google Scholar 

  • Rübsamen R, Neuweiler G, Marimuthu G (1989) Ontogenesis of tonotopy in inferior colliculus of a hipposiderid bat reveals postnatal shift in frequency-place code. J Comp Physiol A 165: 755–769

    Google Scholar 

  • Saidel WM, Popper AN (1987) Sound reception in two anabantid fishes. Comp Biochem Physiol 88A: 37–44

    Google Scholar 

  • Sand O (1981) The lateral line and sound reception. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, New York, pp 459–480

    Google Scholar 

  • Sand O (1984) Lateral line systems. In: Bolis L, Keynes RD, Maddrell SHP (eds) Comparative physiology of sensory systems. Cambridge Univ Press, Cambridge, pp 3–32

    Google Scholar 

  • Sand O, Enger PS (1973) Evidence for an auditory function of the swimbladder in the cod. J Exp Biol 59: 405–414

    Google Scholar 

  • Schmale M (1981) Sexual selection and reproductive success in males of the bicolor damselfish, Eupomacentrus partitus (Pisces: Pomacentridae). Anim Behav 29: 1172–1184

    Google Scholar 

  • Sento S, Furukawa T (1987) Intra-axonal labeling of saccular afferents in the goldfish Carassius auratus: correlations between morphological and physiological characteristics. J Comp Neurol 258: 352–367

    Google Scholar 

  • Sinnott JM, Aslin RN (1985) Frequency and intensity discrimination in human infants and adults. J Acoust Soc Am 78: 1986–1992

    Google Scholar 

  • Sinnott JM, Pisoni DB, Aslin RN (1983) A comparison of pure tone auditory thresholds in infants and adults. Infant Behav and Dev 6: 3–17

    Google Scholar 

  • Stebbins WC (ed) (1970) Animal psychophysics: the design and conduct of sensory experiments. Appleton-Century-Crofts, NY

    Google Scholar 

  • Stephens CB (1974) Development of the middle and inner ear in the golden hamster. Acta Oto-Laryngol 296: 1–51

    Google Scholar 

  • Tavolga WN (1982) Signal/noise ratio and the critical band in fishes. J Acoust Soc Am 55: 1323–1333

    Google Scholar 

  • Tavolga WN (1982) Auditory acuity in the sea catfish (Arius felis). J Exp Biol 96: 367–376

    Google Scholar 

  • Weiss BA (196) Auditory sensitivity in the goldfish. J Aud Res 6: 321–335

    Google Scholar 

  • Zimmerman E (1993) Behavioral measures of auditory thresholds in developing tree shrews (Tupia belangeri). J Acoust Soc Am 94: 3071–3075

    Google Scholar 

  • Zimmerman E, Binz H, Rahmann H (1992) Changes in hearing and sound induced 2DG-patterns in the brain of developing tree shrews. Abstract, 22nd Annual Meeting of the Society for Neuroscience, p 1195

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenyon, T.N. Ontogenetic changes in the auditory sensitivity of damselfishes (pomacentridae). J Comp Physiol A 179, 553–561 (1996). https://doi.org/10.1007/BF00192321

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00192321

Key words

Navigation