Skip to main content
Log in

Patterns of myelination in the opossum superior colliculus with additional reference to the optic tract

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

Patterns of myelination have been studied in the optic tract and the superior colliculus (SC), with special reference to the optic layer, in the opossum Didelphis marsupialis. Myelination in the optic tract starts far in precedence of eye opening and follows a rostrocaudal gradient. Myelination in the SC presents the following features: it proceeds according to a general inside-out pattern and follows both rostro-caudal and latero-medial gradients in the optic layer, and it accelerates in the SC optic layer soon after systematic exposure to visual input. The data presented here, together with other available information, suggest that myelination in the opossum optic tract starts in parallel with the stabilization in the number of optic fibers, and advances in the rostro-caudal mode common to most eutherian mammals, and also that myelogenesis in the SC neither correlates necessarily with, nor recapitulates, the sequence of acquisition of GFAP-positive astrocytes in a given set of layers. Changes in the rate of myelination in the optic layer after exposure to visual input are regionally-selective, and seem compatible with the recruitment of thin axons into the myelogenetic cycle rather than with the thickening of pre-existing myelin sheaths. It is concluded that the SC is a favorable structure for the study of the differentiation of glial cells, particularly in species with an extended time course of maturation such as the opossum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allodi S, Reese BE, Cavalcante LA (1990) Observations on the arrangement of axons according to diameter in the optic tract of the opossum Didelphis marsupialis. Braz J Med Biol Res 23:439–442

    Google Scholar 

  • Barradas PC, Cavalcante LA, Mendez-Otero R, Vieira AM (1989) Astroglial differentiation in the opossum superior colliculus. Glia 2:103–111

    Google Scholar 

  • Bignami A, Dahl D (1973) Differentiation of astrocytes in the cerebellar cortex and pyramidal tracts of the newborn rat. An immunofluorescence study with antibodies to a protein specific to astrocytes. Brain Res 49:393–402

    Google Scholar 

  • Bignami A, Dahl D (1975) Astroglial protein in the developing spinal cord of the chick embryo. Dev Biol 44:204–209

    Google Scholar 

  • Blunt MJ, Baldwin F, Wendell-Smith CP (1972) Gliogenesis and myelination in kitten optic nerve. Z Zellforsch Mikrosk Anat 124:293–310

    Google Scholar 

  • Bruckner G, Mares V, Biesold D (1976) Neurogenesis in the visual system of the rat. An autoradiographic investigation. J Comp Neurol 166:245–256

    Google Scholar 

  • Cavalcante LA (1987) Postnatal neurogenesis and the formation of neural connections in the visual system of a marsupial. In: Chagas C, Linden R (eds) Developmental neurobiology of mammals. Pontifical Academy, Vatican, pp 1–29

    Google Scholar 

  • Cavalcante LA, Rocha-Miranda CE (1978) Postnatal development of retinogeniculate, retinopretectal and retinotectal projections in the opossum. Brain Res 146:231–248

    Google Scholar 

  • Cavalcante LA, Rocha-Miranda CE, Lent R (1975) Hypothalamic, tectal and accessory optic projections in the opossum. Brain Res 84:302–307

    Google Scholar 

  • Cavalcante LA, Rocha-Miranda CE, Linden R (1984) Observations on neurogenesis of the superior colliculus and pretectum in the opossum. Dev Brain Res 13:241–249

    Google Scholar 

  • Cooper ML, Rakic P (1981) Neurogenetic gradients in the superior and inferior colliculi of the rhesus monkey. J Comp Neurol 202:309–334

    Google Scholar 

  • Dahl D (1981) The vimentin-GFA protein transition in rat neuroglia occurs at the time of myelination. J Neurosci Res 6:741–748

    Google Scholar 

  • do Carmo MP (1976) Differential geometry of curves and surfaces. Prentice Hall, Englewood Cliffs, 503 pp

    Google Scholar 

  • Friede RL, Hu KH (1967) Proximo-distal differences in myelin development in human optic fibers. Z Zellforsch Mikrosk Anat 79:259–264

    Google Scholar 

  • Gallyas F (1979) Silver staining of myelin by means of physical development. Neurol Res 1:203–209

    Google Scholar 

  • Ghandour MS, Sko'ff RP (1988) Expression of galactocerebroside in developing normal and jimpy oligodendrocytes in situ. J Neurocytol 17:485–498

    Google Scholar 

  • Hess DT, Merker BH (1983) Technical modifications of Gallyas silver stain for myelin. J Neurosci Methods 8:95–97

    Google Scholar 

  • Hildebrand C, Waxman SG (1984) Postnatal differentiation of rat optic nerve fibers: electron microscopic observations on the development of nodes of Ranvier and axoglial relations. J Comp Neurol 224:25–37

    Google Scholar 

  • Hirano M, Goldman JE (1988) Gliogenesis in rat spinal cord: evidence for origin of astrocytes and oligodendrocytes from radial precursors. J Neurosci Res 21:155–167

    Google Scholar 

  • Hokoc JN, Oswaldo-Cruz E (1978) Quantitative analysis of the opossum's optic nerve: an electron microscopic study. J Comp Neurol 178:773–782

    Google Scholar 

  • Huber GC, Crosby EC (1943) A comparison of the mammalian and reptilian tecta. J Comp Neurol 78:133–168

    Google Scholar 

  • Kirby MA, Clift-Forsberg L, Wilson PD, Rapisardi SC (1982) Quantitative analysis of the optic nerve of the North American opossum (Didelphis virginiana): an electron microscopic study. J Comp Neurol 211:318–327

    Google Scholar 

  • Kirby MA, Wilson PD, Fischer TM (1988) Development of optic nerve of the opossum (Didelphis virginiana). Dev Brain Res 44:37–48

    Google Scholar 

  • Langworthy OR (1928) The behavior of pouch-young opossums correlated with the myelination of tracts in the nervous system. J Comp Neurol 46:201–240

    Google Scholar 

  • Lent R, Cavalcante LA, Rocha-Miranda CE (1976) Retinofugal projections in the opossum. An anterograde degeneration and radioautographic study. Brain Res 107:9–26

    Google Scholar 

  • Levine JM (1989) Neuronal influences on glial progenitor cell development. Neuron 3:103–113

    Google Scholar 

  • Linden R, Rocha-Miranda CE (1978) Projections from the striate cortex to the superior colliculus in the opossum (Didelphis marsupialis aurita). In: Rocha-Miranda CE, Lent R (eds) Opossum neurobiology. Academia Brasileira de Ciencias, Rio de Janeiro, pp 137–150

    Google Scholar 

  • Linden R, Rocha-Miranda CE (1983) Organization of the visual thalamus: corticothalamic projections from the primary visual area in the opossum. Braz J Med Biol Res 16:247–260

    Google Scholar 

  • Linser PJ, Perkins M (1987) Gliogenesis in the embryonic avian optic tectum: neuronal-glial interactions influence astroglial phenotype maturation. Dev Brain Res 31:277–290

    Google Scholar 

  • Looney GA, Elberger AJ (1986) Myelination of the corpus callosum in the cat: time course, topography, and functional implications. J Comp Neurol 248:336–347

    Google Scholar 

  • Macri JJ, Perez M, Rama F, Rebollo MA (1966) Myelinization of the optic pathway in albino rats. An Fac Med Univ Repub (Montevideo) 51:45–59

    Google Scholar 

  • Mc Crady E Jr (1938) The embryology of the opossum. Am Anat Memoirs 16, Wistar Institute, Philadelphia, 233 pp

    Google Scholar 

  • Mendez-Otero R, Cavalcante LA, Rocha-Miranda CE, Bernardes RF, Barradas PCR (1985) Growth and restriction of the ipsilateral retinocollicular projection in the opossum. Dev Brain Res 18:199–210

    Google Scholar 

  • Miller RH, David S, Patel R, Abney ER, Raff MC (1985) A quantitative immunohistochemical study of macroglial cell development in the rat optic nerve: in vivo evidence for two distinct astrocyte lineages. Dev Biol 111:35–41

    Google Scholar 

  • Moore CL, Kalil R, Richards W (1976) Development of myelination in optic tract of the cat. J Comp Neurol 163:125–136

    Google Scholar 

  • Mustari MJ, Lund RD, Graubard K (1979) Histogenesis of the superior colliculus of the albino rat. A tritiated thymidine study. Brain Res 164:39–52

    Google Scholar 

  • Nakayama K (1967) Studies on myelination of human optic nerve. Jpn J Ophthalmol 11:18–26

    Google Scholar 

  • Oblinger MM, Das GD (1981) Neurogenesis in the brain stem of the rabbit: an autoradiographic study. J Comp Neurol 197:45–62

    Google Scholar 

  • Oswaldo-Cruz E, Rocha-Miranda CE (1968) The brain of the opossum (Didelphis marsupialis), Instituto de Biofisica da Universidade Federal do Rio de Janeiro, Rio de Janeiro, 99 pp

    Google Scholar 

  • Raff MC (1989) Glial cell diversification in the rat optic nerve. Science 243:1450–1455

    Google Scholar 

  • Raff MC, Mirsky R, Fields KL, Lisak RP, Dorfman SH, Silderberg DH, Gregson NA, Leibowitz S, Kennedy MC (1978) Galactocerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture. Nature 274:813–816

    Google Scholar 

  • Ramon y Cajal S (1911) Histologie du système nerveux de l'homme et des vertébrés, vol II, Maloine, Paris

    Google Scholar 

  • Ranscht B, Clapshaw PA, Price J, Noble M, Seifert W (1982) Development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside. Proc Natl Acad Sci USA 79:2709–2713

    Google Scholar 

  • Rapaport DH, Wilson PD (1983) Retinal ganglion cell size groups projecting to the superior colliculus and the dorsal lateral geniculate nucleus in the North American opossum. J Comp Neurol 213:74–85

    Google Scholar 

  • Rapaport DH, Wilson PD, Rowe MH (1981) The distribution of ganglion cells in the retina of the North American opossum (Didelphis virginiana). J Comp Neurol 199:465–480

    Google Scholar 

  • Reynolds HC (1952) Studies of reproduction in the opossum. Univ Calif Publ Zool 52:233–294

    Google Scholar 

  • Rocha-Miranda CE, Cavalcante LA, Gawryszewski LG, Linden R, Volchan E (1978) The vertical meridian representation and the pattern of retinotectal projections in the opossum. In: Rocha-Miranda CE, Lent R (eds) Opossum neurobiology. Academia Brasileira de Ciencias, Rio de Janeiro, pp 113–126

    Google Scholar 

  • Skoff RP (1978) The pattern of myelination along the developing rat optic nerve. Neurosci Lett 7:191–196

    Google Scholar 

  • Skoff RP, Toland D, Nast E (1980) Pattern of myelination and distribution of neuroglial cells along the developing optic system of the rat and rabbit. J Comp Neurol 191:237–253

    Google Scholar 

  • Sterling P (1971) Receptive fields and synaptic organization of the superficial gray layer of the cat superior colliculus. Vision Res [Suppl] 3:309–328

    Google Scholar 

  • Volchan E, Gawryszewski LG, Rocha-Miranda CE (1982) Visuotopic organization of the superior colliculus of the opossum. Exp Brain Res 46:263–268

    Google Scholar 

  • Yakovlev PI, Lecours A-R (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional Development of the Brain in Early Life. William Clowes, London, pp 3–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Previous publications as A.M.B. Malbouisson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavalcante, L.A., Barradas, P.C. & Martinez, A.M.B. Patterns of myelination in the opossum superior colliculus with additional reference to the optic tract. Anat Embryol 183, 273–285 (1991). https://doi.org/10.1007/BF00192215

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00192215

Key words

Navigation