Skip to main content
Log in

The sensory basis for the trap-jaw mechanism in the ant Odontomachus bauri

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Ants of the ponerine genus Odontomachus have evolved a mechanism that allows them to instantaneously close their long mandibles to catch prey or defend themselves. This trap-jaw action is triggered by contact of trigger hairs with a potential prey item. Two of these long mechanosensory hair sensilla reside proximally on each mandible and are supplied by giant sensory cells.

Extracellular recordings demonstrate that the sensory cells respond to tactile stimulation. Their phasic responses encode amplitude and velocity of hair-deflection away from the midline, but not hair position. The discharge of action potentials follows stimulus frequencies of more than 300 Hz. During sinusoidal stimulation, the cells adapt very little, sustain discharge rates of more than 200 Hz for more than 20 s, and reach peak spike rates of about 450 Hz.

The afferent axons of these sensory cells give rise to huge axon terminals within the suboesophageal ganglion. One of the afferents has a prominent contralateral branch, the other is confined to ipsilateral neuropil. Anatomical data indicate that the 4 afferents may be coupled and may serve as the substrate for a very fast reflex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HRP:

horseradish peroxidase

LGS:

lateral giant sensillum

MGS:

median giant sensillum

SEM:

scanning electron microscopy

SOG:

suboesophageal ganglion

References

  • Altman JS, Kien J (1987) Functional organization of the suboesophageal ganglion in arthropods. In: Gupta AP (ed) Arthropod brain. Wiley Interscience, New York Chichester Brisbane Toronto Singapore, pp 265–302

    Google Scholar 

  • Bacon JP, Altman JS (1977) A silver intensification method for cobalt-filled neurons in wholemount preparations. Brain Res 138:359–363

    Google Scholar 

  • Barth A (1960) Über den Bewegungsmechanismus der Mandibeln von Odontomachus chelifer Latr. (Hymenopt., Formicidae). An Acad Brasil Ciencias 32:379–384

    Google Scholar 

  • Carlin NF (1981) Polymorphism and division of labor in the dacetine ant Orectognathus versicolor. Psyche 88:231–244

    Google Scholar 

  • Carlin NF, Gladstein DS (1989) The “bouncer” defense of Odontomachus ruginodis and other odontomachine ants (Hymenoptera: Formicidae). Psyche 96:1–19

    Google Scholar 

  • Dejean A (1986) Etude du comportement de predation dans le genre Strumigenys (Formicidae-Myrmicinae). Insectes Sociaux 33:388–405

    Google Scholar 

  • Dejean A, Bashingwa E (1985) La prédation chez Odontomachus troglodytes Santschi (Formicidae-Ponerinae). Insectes Sociaux 32:23–42

    Google Scholar 

  • Gronenberg W, Strausfeld NJ (1992) Premotor descending neurons responding selectively to local visual stimuli in flies. J Comp Neurol 316:87–103

    Google Scholar 

  • Gronenberg W, Peeters C (1993) Central projections of the sensory hairs on the gemma of the ant Diacamma: substrate for behavioral modulation? Cell Tissue Res 273:401–415

    Google Scholar 

  • Gronenberg W, Tautz J, Hölldobler B (1993) Fast trap jaws and giant neurons in the ant Odontomachus. Science 262:561–563

    Google Scholar 

  • Heitler WJ (1982) Non-spiking stretch-receptors in the crayfish swimmeret system. J Exp Biol 96:355–366

    Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Belknap Press of Cambridge Univ Press, Cambridge Mass

    Google Scholar 

  • Homberg U, Christensen TA, Hildebrand JG (1989) Structure and function of the deutocerebrum in insects. Annu Rev Entomol 34:477–501

    Google Scholar 

  • Horikawa K, Armstrong WE (1988) A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J Neurosci Meth 25:1–11

    Google Scholar 

  • Jaffe K, Marcuse M (1983) Nestmate recognition and territorial behaviour in the ant Odontomachus bauri Emery (Formicidae: Ponerinae). Insectes Sociaux 30:466–481

    Google Scholar 

  • Janet C (1899) Sur les nerfs céphaliques, les corpora allata et le tentorium de la fourmi. Mémoires Soc Zool France 12:295–337

    Google Scholar 

  • Janet C (1905) Anatomie de la tête du Lasius niger. Limoges, Ducourtieux et Gout, Paris

    Google Scholar 

  • Masuko K (1986) Motor innervation and proprioceptors of the mouthparts in the worker honey bee, Apis mellifera. I. Mandibular nerve. J Morphol 188:51–67

    Google Scholar 

  • Moffett MW (1986) Trap-jaw predation and other observations on two species of Myrmoteras (Hymenoptera: Formicidae). Insectes Sociaux 33:85–99

    Google Scholar 

  • Murphey RK (1985) A second cricket cereal sensory system: bristle hairs and the interneurons they activate. J Comp Physiol A 156:357–367

    Google Scholar 

  • Murphey RK, Jacklet A, Schuster L (1980) A topographic map of sensory cell terminal arborizations in the cricket CNS: correlation with birthday and position in a sensory array. J Comp Neurol 191:53–64

    Google Scholar 

  • Oliveira PS, Hölldobler B (1989) Orientation and communication in the neotropical ant Odontomachus bauri Emery (Hymenoptera, Formicidae, Ponerinae). Ethology 83:154–166

    Google Scholar 

  • Paul DH (1972) Decremental conduction over “giant” afferent processes in an arthropod. Science 176:680–682

    Google Scholar 

  • Rehder V (1989) Sensory pathways and motor neurons of the proboscis reflex in the suboesophageal ganglion of the honey bee. J Comp Neurol 279:499–513

    Google Scholar 

  • Strausfeld NJ, Bacon JP (1982) Multimodal convergence in the central nervous system of insects. In: Horn E (ed) Multimodal convergence in sensory systems. G Fischer, Stuttgart, pp 47–76

    Google Scholar 

  • Strausfeld NJ, Obermayer M (1976) Resolution of intraneuronal and transsynaptic migration of cobalt in the insect visual and nervous systems. J Comp Physiol 110:1–12

    Google Scholar 

  • Wheeler WM (1900) A study on some Texan Ponerinae. Biol Bull 2:1–31

    Google Scholar 

  • Wilson EO (1962) Behaviour of Daceton armigerum (Latr.) with a classification of self-grooming movements in ants. Bull Mus Comp Zool 127:403–422

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gronenberg, W., Tautz, J. The sensory basis for the trap-jaw mechanism in the ant Odontomachus bauri . J Comp Physiol A 174, 49–60 (1994). https://doi.org/10.1007/BF00192005

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00192005

Key words

Navigation