Skip to main content
Log in

Ultrastructural analysis of plastids in angiosperm pollen tubes

  • Original articles
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Summary

When Rhododendron pollen tubes are cultured in the dark, electron-dense bodies are present that appear to be a metabolically altered form of a proplastid that is difficult to fix for electron microscopy, and whose membranes may not be intact. When similar pollen tubes are cultured in a dark/light regime, ultrastructurally well-defined proplastids are present after fixation in glutaraldehyde with PIPES buffer and tannic acid, followed by osmic acid. This fixation technique also gave the best ultrastructural images of those proplastids in pollen tubes grown in the dark. Pollen tube plastids have the potential to become chromoplasts when cultured in a dark/light regime as evidenced by the presence of branched tubules characteristic of these organelles. Light appears to be a hitherto neglected environmental factor involved in regulating pollen tube growth. This improved fixation procedure demonstrates the bilayered nature of the membranes surrounding sperm cells and the existence of cytoplasmic channels connecting sperm cell and pollen tube plasma membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonilla E (1977) Staining of transverse tubular system of skeletal muscle by tannic acid-glutaraldehyde fixation. J Ultrastruct Res 58:162–165

    Google Scholar 

  • Brewbaker JL, Kwack BY (1963) The essential role of calcium ion in pollen germination and pollen tube growth. Am J Bot 50:859–865

    Google Scholar 

  • Carde JP, Camara B, Cheniclet C (1988) Absence of ribosomes in Capsicum chromoplasts. Planta 173:1–11

    Google Scholar 

  • Carde JP, Joyard J, Douce R (1982) Electron microscopic studies of envelope membranes from spinach plastids. Biol Cell 44:315–324

    Google Scholar 

  • Cass DD (1973) An ultrastructural and Nomarski — interference study of the sperms of barley. Can J Bot 51:601–605

    Google Scholar 

  • Ciampolini F, Moscatelli A, Cresti M (1988) Ultrastructural features of Aloe ciliaris pollen. I. Mature grain and its activation in vitro. Sex Plant Reprod 1:88–96

    Google Scholar 

  • Clauhs RP, Grun P (1977) Changes in plastid and mitochondrion content during maturation of generative cells of Solanum (Solanaceae). Am J Bot 64:377–383

    Google Scholar 

  • Cresti M, Ciampolini F, Mulcahy DLM, Mulcahy GB (1985) Ultrastructure of Nicotiana alata pollen, its germination and early tube formation. Am J Bot 72:719–727

    Google Scholar 

  • Cresti M, Lancelle SA, Hepler PK (1987) Structure of the generative cell wall complex after freeze substitution in pollen tubes of Nicotiana and Impatiens. J Cell Sci 88:373–378

    Google Scholar 

  • Deurs B van (1975) The use of a tannic acid-glutaraldehyde fixative to visualize gap and tight junctions. J Ultrastruct Res 50:185–192

    Google Scholar 

  • Dickinson HG (1981) Cytoplasmic differentiation during microsporogenesis in higher plants. Acta Soc Bot Pol 50:3–12

    Google Scholar 

  • Endress AG (1979) Plastid ultrastructure in the avocado nucellus. Ann Bot (London) 44:511–512

    Google Scholar 

  • Falk H (1976) Chromoplasts of Tropaeolum majus L.: structure and development. Planta 128:15–22

    Google Scholar 

  • Golding D (1988) The secret life of the neuron. New Sci 119:52–55

    Google Scholar 

  • Hagemann R (1981) Unequal plastid distribution during the development of the male gametophyte of angiosperms. Acta Soc Bot Pol 50:321–327

    Google Scholar 

  • Hansmann P, Falk H, Ronai K, Sitte P (1985) Structure, composition, and distribution of plastid nucleoids in Narcissus pseudonarcissus. Planta 164:459–472

    Google Scholar 

  • Horner HT (1977) A comparative light- and electron-microscopical study of microsporogenesis in male-fertile and cytoplasmic male-sterile sunflower (Helianthus annuus). Am J Bot 64:745–759

    Google Scholar 

  • Jensen WA, Fisher DB (1970) Cotton embryogenesis: the pollen tube in the stigma and style. Protoplasma 69:215–235

    Google Scholar 

  • Kaul V, Theunis CH, Palser BF, Knox RB, Williams EG (1987) Association of the generative cell and generative nucleus in pollen tubes of Rhododendron. Ann Bot (London) 59:227–235

    Google Scholar 

  • Knoth R, Wrischer M, Vetters J (1980) Phytoferritin accumulating plastids in the male generative cell of Pelargonium hortorum. Z Pflanzenphysiol 98:365–370

    Google Scholar 

  • Lafountain JR Jr, Zobel CR, Thomas HR, Galbreath C (1977) Fixation and staining of F-actin and microfilaments using tannic acid. J Ultrastruct Res 58:78–86

    Google Scholar 

  • Lancelle SA, Callaham DA, Hepler PK (1986) A method for rapid freeze fixation of plant cells. Protoplasma 131:153–165

    Google Scholar 

  • Lin J, Uwate WJ, Stallman V (1977) Ultrastructural localization of acid phosphatase in the pollen tube of Prunus avium L. (sweet cherry). Planta 135:183–190

    Google Scholar 

  • McConchie CA, Jobson S, Knox RB (1985) Computer-assisted reconstruction of the male germ unit in pollen of Brassica campestris. Protoplasma 127:57–63

    Google Scholar 

  • Mesquita JF (1974) La différenciation des plastes dans les fleurs de Narcissus L. I. Modification ultrastructurales et pigmentaires pendant la morphogénèse des chromoplastes chez N. bulbocodium L. Rev Biol 10:127–142

    Google Scholar 

  • Mizuhira V, Futaesaku Y (1971) On the new approach of tannic acid and digitonine to the biological fixatives. Proc Annu Meet Electron Microsc Soc Am 29:494

    Google Scholar 

  • Mogensen HL (1986) Juxtaposition of the generative cell and vegetative nucleus in the mature pollen grain of Amaryllis (Hippeastrum vitatum). Protoplasma 134:67–72

    Google Scholar 

  • Mogensen HL, Rusche ML (1985) Quantitative ultrastructural analysis of barley sperm: I. Occurrence and mechanism of cytoplasm and organelle reduction and the question of sperm dimorphism. Protoplasma 128:1–13

    Google Scholar 

  • Mollenhauer HH, Kogut C (1968) Chromoplast development in daffodil. J Microsc 7:1045–1050

    Google Scholar 

  • Pacini E, Cresti M (1976) Close association between plastids and endoplasmic reticulum cisterns during pollen grain development in Lycopersicon peruvianum. J Ultrastruct Res 57:260–265

    Google Scholar 

  • Pargney JC (1982) Étude ultrastructurale des tubes polliniques angiospermiens: application de quelques techniques cytochimiques. Can J Bot 60:1167–1176

    Google Scholar 

  • Parthasarathy MV, Pesacreta TC (1980) Microfilaments in plant vascular cells. Can J Bot 58:807–815

    Google Scholar 

  • Ponzi R, Pizzolongo P (1973) Ultrastructure of plastids in the suspensor cells of Ipomoea purpurea Roth L. Submicrosc Cytol 5:257–263

    Google Scholar 

  • Rosen WC, Gawlik SR (1966) Fine structure of Lily pollen tubes following various fixation and staining procedures. Protoplasma 61:181–191

    Google Scholar 

  • Russell SD (1980) Participation of male cytoplasm during gamete fusion in an angiosperm, Plumbago zeylanica. Science 210:200–201

    Google Scholar 

  • Russell SD (1983) Fertilization in Plumbago zeylanica: gametic fusion and fate of the male cytoplasm. Am J Bot 70:416–434

    Google Scholar 

  • Russell SD (1984) Ultrastructure of the sperm of Plumbago zeylanica. II. Quantitative cytology and three-dimensional organization. Planta 162:385–391

    Google Scholar 

  • Russell SD, Cass DD (1981) Ultrastructure of the sperms of Plumbago zeylanica. I. Cytology and association with the vegetative nucleus. Protoplasma 107:85–107

    Google Scholar 

  • Simionescu N, Simionescu M (1976) Galloylglucoses of low molecular weight as mordant in electron microscopy. J Cell Biol 70:608–621

    Google Scholar 

  • Simpson DJ, Bagar MR, Lee TM (1977) Chemical regulation of plastid development. III. Effect of light and CPTA on chromoplast ultrastructure and carotenoids of Capsicum annuum. Z Pflanzenphysiol 82:189–209

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Google Scholar 

  • Spurr AR, Harris WM (1968) Ultrastructure of chloroplasts and chromoplasts in Capsicum annuum. I. Thylakoid membrane changes during fruit ripening. Am J Bot 55:1210–1224

    Google Scholar 

  • Van Went JL (1981) Some cytological and ultrastructural aspects of male sterility in Impatiens. Acta Soc Bot Pol 50:249–252

    Google Scholar 

  • Wellburn AR (1982) Bioenergetic and ultrastructural changes associated with chloroplast development. Int Rev Cytol 80:133–191

    Google Scholar 

  • Wilms HJ, Leferink-ten Klooster HB (1983) Ultrastructural changes of spinach sperm cells during the progamic phase. In: Erdelska O (ed) Fertilization and embryogenesis in ovulated plants. Czechoslovakian Center of Biological and Ecological Sciences, Bratislava, pp 239

    Google Scholar 

  • Winkenbach F, Falk B, Liedvogel B, Sitte P (1976) Chromoplasts of Tropaeolum majus L.: isolation and characterization of lipoprotein elements. Planta 128:23–28

    Google Scholar 

  • Zhu C, Hu S, Xu L, Li X, Shen J (1980) Ultrastructure of sperm cell in mature pollen grain of wheat. Sci Sin 23:371–376

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staff, I.A., Taylor, P., Kenrick, J. et al. Ultrastructural analysis of plastids in angiosperm pollen tubes. Sexual Plant Reprod 2, 70–76 (1989). https://doi.org/10.1007/BF00191993

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00191993

Key words

Navigation