Advertisement

Trees

, Volume 3, Issue 2, pp 78–84 | Cite as

Studies on ectomycorrhiza

XXII. Mycorrhizal rhizomorphs of Telephora terrestris and Pisolithus tinctorius in association with Norway spruce (Picea abies): formation in vitro and translocation of phosphate
  • H. Kammerbauer
  • R. Agerer
  • H. SandermannJr.
Original Articles

Summary

Plants of Picea abies (L.) Karst were grown in mycorrhizal association with Telephora terrestris (Pers. ex Fr.) and Pisolithus tinctorius (Mich. ex Pers.) Coker and Couch on sphagnum peat in petri dishes or Perspex chambers. After 1 year T. terrestris had formed prominent rhizomorphs which were characterized by light microscopy and investigated for 32P-orthophosphate uptake. The absorbed phosphate was transported to sinks throughout the rhizomorphal system as well as into the plant. The calculated translocation velocity and flux rate in the rhizomorph were in the range of 1–3 cm/h and 0.5–4.0 × 10-10 mol cm-2 s-1, respectively. Label was observed to accumulate in the needles 2–3 days after application. Feeding a non-mycorrhized root with 32P-orthophosphate led to an accumulation of label in needles within 1 h, but no radioactivity appeared in the associated T. terrestris rhizomorphs. The rhizomorphs of P. tinctorius revealed a higher structural differentiation than those of T. terrestris. Translocation of labelled phosphorus through rhizomorphs of P. tinctorius into spruce needles was also demonstrated.

Key words

Picea abies Pisolithus tinctorius Phosphate uptake Rhizomorph function Telephora terrestris Translocation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agerer R (1987a) The ecological crucial question of ectomycorrhizae: how to make rhizomorphs. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade — practical applications and research priorities. Proc NACOM 7, Gainesville, Fla., p 184Google Scholar
  2. Agerer R (1987b) Studies on ectomycorrhizae IX. Mycorrhizae formed by Tricholoma sulphureum and T. vaccinium on spruce. Mycotaxon 28: 327–360Google Scholar
  3. Agerer R (1988) Studies on ectomycorrhizae XVII. The ontogeny of the ectomycorrhizal rhizomorphs of Paxillus involutus and Telephora terrestris (Basidiomycetes). Nova Hedwigia 2 Kryptogamenkd 47: 311–334Google Scholar
  4. Agerer R, Weiß M (1989) Studies on ectomycorrhizae XX. Mycorrhizae formed by Telephora terrestris on Norway spruce. Mycologia (in press)Google Scholar
  5. Agerer R, Brand F, Gronbach E (1986) Die exakte Kenntnis der Ektomykorrhizen als Voraussetzung für Feinwurzel untersuchungen im Zusammenhang mit dem Waldsterben. Allgem Forst-Z 20: 497–503Google Scholar
  6. Brand F (1989) Studies on ectomycorrhizae. XXI. Beech ectomycorrhizae and rhizomorphs of Xerocomus chrysenteron (Boletales). Nova Hedwigia 2 Kryptogamenkd (in press)Google Scholar
  7. Duddridge JA, Malibari A, Read DJ (1980) Structure and function of mycorrhizal rhizomorphs with special reference in their role in water transport. Nature 287: 834–836Google Scholar
  8. Finlay RD, Read DJ (1986) The structure and function of vegetative mycelium of ectomycorrhizal plants. II. The uptake and distribution of phosphorus by mycelial strands interconnecting host plants. New Phytol 103: 157–165Google Scholar
  9. Forschungsbeirat (1986) Waldschäden/Luftverunreinigungen. 2. Bericht der Bundesregierung. KfK, KarlsruheGoogle Scholar
  10. Gronbach E (1988) Charakterisierung und Identifizierung von Ektomykorrhizen in einem Fichtenbestand mit Untersuchungen zur Merkmalsvariabilität in sauer beregneten Flächen. Bibl Mycol 125: 1–216Google Scholar
  11. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, New YorkGoogle Scholar
  12. Haug I, Oberwinkler F (1987) Some distictive types of spruce mycorrhizae. Trees 1: 172–188Google Scholar
  13. Ingestad T (1959) Studies on the nutrition of forest tree seedlings. II. Mineral nutrition of spruce. Physiol Plant 12: 568–593Google Scholar
  14. Kottke I, Oberwinkler F (1986) Mycorrhiza of forest tree seedlings. Trees 1: 1–24Google Scholar
  15. Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistence of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 10: 429–454Google Scholar
  16. Melin E, Nilsson H (1950) Transfer of radioactive phosphorus to pine seedlings by means of mycorrhizal hyphae. Physiol Plant 3: 88–92Google Scholar
  17. Rhodes LH, Hirrel MC (1982) Radiotracer methods for my corrhizal research. In: Schenck NC (ed) Methods and principles of mycorrhizal research. The American Phytopathological Society, St. Paul Minnesota, pp 189–200Google Scholar
  18. Skinner MF, Bowen GD (1974) The uptake and translocation of phosphate by mycelial strands of pine mycorrhizas. Soil Biol Chem 6: 53–56Google Scholar
  19. Strullu DG (1985) Les mycorrhizes. Encyclopedia of plant anatomy. Borntraeger, BerlinGoogle Scholar
  20. Weigl J, Ziegler H (1960) Wasserhaushalt und Stoffleitung bei Merulius lacrymans (Wulf.) Fr Arch Mikrobiol 37: 124–133Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • H. Kammerbauer
    • 1
    • 2
  • R. Agerer
    • 1
  • H. SandermannJr.
    • 2
  1. 1.Institut für Systematische Botanik der UniversitätMunichFederal Republic of Germany
  2. 2.Institut für Biochemische Pflanzenpathologie, GSF MünchenNeuherbergFederal Republic of Germany

Personalised recommendations