Skip to main content
Log in

Numerical and experimental study of the forced convection inside a rotating disk-cylinder configuration

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

In this paper, axisymmetric bulk flow patterns generated by moderate disk rotation and counter-rotation inside a coaxial disk-cylinder configuration with a fixed aspect ratio are obtained both experimentally and numerically. Experimental results are based on chronophotographic visualization and image processing techniques, while numerical results are computed using the full stationary Navier-Stokes equations assuming two different dynamic boundary conditions (no-slip and meridional free-slip) for all rigid walls. A comparative analysis between both numerical distributing and the patterns obtained experimentally is carried out in terms of streamfunction and vorticity meridional distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bertelá, M.; Gori, F. 1982: Laminar flow in a cylindrical container with a rotating cover. J. Fluids Eng 104, 31–39

    Google Scholar 

  • Crochet, M. J.; Wouters, P. J.; Geyling, F. T.; Jordan, A. S. 1983: Finite-element simulation of Czochralski bulk flow. J. Crystal Growth 65, 53–164

    Google Scholar 

  • Dijkstra, D.; Van Heijst, G. J. F. 1983: The flow between two finite rotating disks enclosed by a cylinder, J. Fluid Mech. 128, 123–154

    Google Scholar 

  • Greenspan, H. P. 1968: The theory of rotating fluids. London: Cambridge Univ. Press

    Google Scholar 

  • Hyun, J. M. 1984: Flow near a slowly rotating disk in a finite cylinder. J. Phys. Soc. Japan 53, 3808–3813

    Google Scholar 

  • Hyun, J. M. 1985: Transient starting flow in a cylinder with counter-rotating endwall disks. J. Fluids Eng. 197, 92–96

    Google Scholar 

  • Imaichi, K.; Ohmi, K. 1985: Quantitative flow analysis aided by image processing of flow visualization photographs. Flow Visualization III, ed. W.-J. Yang, Washington: Hemisphere 365–369

    Google Scholar 

  • Kobayashi, N.; Arizumi, T. 1975: Computational analysis of the flow in a crucible. J. Crystal Growth 30, 177–184

    Google Scholar 

  • Lai, C. Y.; Rajagopal, K. R.; and Szeri, A. Z. 1984: Asymmetric flow between two parallel rotating disks. J. Fluid Mech. 146, 203–225

    Google Scholar 

  • Lai, C. Y.; Rajagopal, K. R.; Szeri, A. Z. 1985: Asymmetric flow above a rotating disk. J. Fluid Mech. 157, 471–492

    Google Scholar 

  • Langlois, W. E. 1985: Buoyancy-driven flows in crystal growth melts. Ann. Rev. Fluid Mech. 17, 195–212

    Google Scholar 

  • Lught, H. J.; and Haussling, H. J. 1973: Development of flow circulation in a rotating tank. Acta Mech. 18, 255–272

    Google Scholar 

  • Massons, J.; Gavaldà, Jna.; Díaz, F.; Solé, Ll. 1989: Image processing of cylinder wake generation. Phys. Fluids, 1, 1415–1423

    Google Scholar 

  • Mihelčić, M.; Schroeck-Pauli, C.; Wingerath, K.; Wenzl, H.; Uelhoff, W.; Van der Hart, A. 1981: Numerical simulation of forced convection in the classical Czochralski method, in ACRT and CACRT. J. Crystal Growth 53, 337–354

    Google Scholar 

  • Nikolov, V.; Iliev, K.; Peshev, P. 1982: Simulation studies of the hydrodynamics in high-temperature solutions for crystal growth. I. Forced convection, Mat. Res. Bull. 17, 1491–1498

    Google Scholar 

  • Nikolov, V.; Iliev, K.; Peshev, P. 1986: Effect of the hydrodynamics in high-temperature solution on the quality of pure and substituted YIG single crystal grown by the TSSG method, J. Crystal Growth 75, 269–276

    Google Scholar 

  • Nikolov, V.; Iliev, K.; Peshev, P. 1988: Relationship between the hydrodynamics in the melt and the shape of the crystal/melt interface during Czochralski growth of oxide single crystals, J. Crystal Growth 89, 313–323

    Google Scholar 

  • Pao, H. P. 1972: Numerical solution of the Navier-Stokes equations for flows in the disk-cylinder system. Phys. Fluids, 15, 4–11

    Google Scholar 

  • Peyret, R.; Taylor, T. D. 1985: Computational methods for fluid flow. Berlin: Springer Verlag

    Google Scholar 

  • Ruiz, X.; Massons, J.; Aguiló, M.; Díaz, F.; Galí, S. 1986: Image processing for fluid flow. J. Crystal Growth 79, 92–95

    Google Scholar 

  • Ruiz, X.; Aguiló, M.; Massons, J.; Díaz, F. 1989: Experimental study of the hydrodynamics in a model crystal growth crucible. Mat. Res. Bull. 24, 493–504

    Google Scholar 

  • Ruiz, X.; Aguiló, M.; Massons, J.; Díaz, F. 1991: Influence of dynamic boundary conditions on the computed flow patterns inside a coaxial rotating disk-cylinder system. Comp. and Fluids. 20, 387–398

    Google Scholar 

  • Shlien, D. J.; Brosh, A. 1979: Velocity field measurements of a laminar thermal. Phys. Fluids 22, 1044–1053

    Google Scholar 

  • Szeri, A. Z.; Schneider, S. J.; Labbe, F.; Kaufman, H. N. 1983: Flow between rotating disks. Part 1. Basic flow. J. Fluid Mech., 134, 103–131

    Google Scholar 

  • Zulehner, W. 1983: Czochralski growth of silicon. J. Crystal Growth 65, 189–213

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz, X., Aguiló, M., Massons, J. et al. Numerical and experimental study of the forced convection inside a rotating disk-cylinder configuration. Experiments in Fluids 14, 333–340 (1993). https://doi.org/10.1007/BF00189491

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00189491

Keywords

Navigation