Skip to main content
Log in

Utilization of Maxwell-Cattaneo law for MHD swirling flow through oscillatory disk subject to porous medium

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The present study aims to investigate the salient features of incompressible, hydromagnetic, three-dimensional flow of viscous fluid subject to the oscillatory motion of a disk. The rotating disk is contained in a porous medium. Furthermore, a time-invariant version of the Maxwell-Cattaneo law is implemented in the energy equation. The flow problem is normalized by obtaining similarity variables. The resulting nonlinear system is solved numerically using the successive over-relaxation method. The main results are discussed through graphical representations and tables. It is perceived that the thermal relaxation time parameter decreases the temperature curves and increases the heat transfer rate. The oscillatory curves for the velocity field demonstrate a decreasing tendency with the increasing porosity parameter values. Two- and three-dimensional flow phenomena are also shown through graphical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. VON KARMAN, T. Ube Laminare und turbulente Reibung. Zeitschrift für Angewandte Mathe-matik und Mechanik, 1, 233–252 (1921)

    Article  MATH  Google Scholar 

  2. COCHRAN, W. G. The flow due to a rotating disk. Mathematical Proceedings of the Cambridge Philosophical Society, 30(3), 365–375 (1934)

    Article  MATH  Google Scholar 

  3. STUART, J. T. On the effects of uniform suction on the steady flow due to a rotating disk. The Quarterly Journal of Mechanics and Applied Mathematics, 7(4), 446–457 (1954)

    Article  MathSciNet  Google Scholar 

  4. BENTON, E. R. On the flow due to a rotating disk. Journal of Fluid Mechanics, 24(4), 781–800 (1966)

    Article  MATH  Google Scholar 

  5. ATTIA, H. A. and HASSAN, A. L. L. Effect of Hall current on the unsteady MHD flow due to a rotating disk with uniform suction or injection. Applied Mathematical Modelling, 25(12), 1089–1098 (2001)

    Article  MATH  Google Scholar 

  6. TURKYILMAZOGLU, M. Effects of uniform radial electric field on the MHD heat and fluid flow due to a rotating disk. International Journal of Engineering Science, 51, 233–240 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. TURKYILMAZOGLU, M. Nanofluid flow and heat transfer due to a rotating disk. Computers and Fluids, 94, 139–146 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. TURKYILMAZOGLU, M. MHD fluid flow and heat transfer due to a shrinking rotating disk. Computers and Fluids, 90, 51–56 (2014)

    Google Scholar 

  9. XUN, S., ZHAO, J., ZHENG, L., CHEN, X., and ZHANG, X. Flow and heat transfer of Ostwald-de Waele fluid over a variable thickness rotating disk with index decreasing. International Journal of Heat and Mass Transfer, 103, 1214–1224 (2016)

    Article  Google Scholar 

  10. YIN, C., ZHENG, L., ZHANG, C., and ZHANG, X. Flow and heat transfer of nanofluids over a rotating disk with uniform stretching rate in the radial direction. Propulsion and Power Research, 6(1), 25–30 (2017)

    Article  Google Scholar 

  11. MUSTAFA, M. MHD nanofluid flow over a rotating disk with partial slip effects. Buongiorno model. International Journal of Heat and Mass Transfer, 108, 1910–1916 (2017)

    Article  Google Scholar 

  12. AZIZ, A., ALASEDI, A., MUHAMMAD, T., and HAYAT, T. Numerical study for heat genera-tion/absorption in flow of nanofluid by a rotating disk. Results in Physics, 8, 785–792 (2018)

    Article  Google Scholar 

  13. MUNAWAR, S., ALI, A., SALEEM, N., and NAQEEB, A. Swirling flow over an oscillatory stretchable disk. Journal of Mechanics, 30(4), 339–347 (2014)

    Article  Google Scholar 

  14. CHRISTOV, C. I. On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mechanics Research Communications, 36(4), 481–486 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. LI, J., ZHENG, L., and LIU, L. MHD viscoelastic flow and heat transfer over a vertical stretching sheet wit. Cattaneo-Christov heat flux effects. Journal of Molecular Liquids, 221, 19–25 (2016)

    Article  Google Scholar 

  16. SHEHZAD, S. A., ABBASI, F. M., HAYAT, T., and AHMED, B. Cattaneo-Christov heat flux model for third-grade fluid flow towards exponentially stretching sheet. Applied Mathematics and Mechanics (English Edition), 37(6), 761–768 (2016) https://doi.org/10.1007/s10483-016-2088-6

    Article  MathSciNet  Google Scholar 

  17. ABBASI, F. M. and SHEHZAD, S. A. Heat transfer analysis for three-dimensional flow of Maxwell fluid with temperature dependent thermal conductivity: application of Cattaneo-Christov heat flux model. Journal of Molecular Liquids, 220, 848–854 (2016)

    Article  Google Scholar 

  18. SHEHZAD, S. A., HAYAT, T., ALASEDI, A., and MERAJ, M. A. Cattaneo-Christov heat and mass flux model for 3D hydromagnetic flow of chemically reactive Maxwell liquid. Applied Mathematics and Mechanics (English Edition), 38(10), 1347–1356 (2017) https://doi.org/10.1007/s10483-017-2188-6

    Article  MathSciNet  MATH  Google Scholar 

  19. MERAJ, M. A., SHEHZAD, S. A., HAYAT, T., ABBASI, F. M., and ALSAEDI, A. Darcy-Forchheimer flow of variable conductivity Jeffrey liquid with Cattaneo-Christov heat flux theory. Applied Mathematics and Mechanics (English Edition), 38(4), 557–566 (2017) https://doi.org/10.1007/s10483-017-2188-6

    Article  MathSciNet  Google Scholar 

  20. RAUF, A., ABBAS, Z., SHEHZAD, S. A., ALASEDI, A., and HAYAT, T. Numerical simulation of chemically reactive Powell-Eyring liquid flow with double diffusive Cattaneo-Christov heat and mass flux theories. Applied Mathematics and Mechanics (English Edition), 39(4), 467–476 (2018) https://doi.org/10.1007/s10483-018-2314-8

    Article  MathSciNet  Google Scholar 

  21. KUMAR, K, A., REDDY, J. V. R., SUGNAMMA, V., and SANDEEP, N. Magnetohydrody-namic Cattaneo-Christov flow past a cone and a wedge with variable heat source/sink. Alexandria Engineering Journal, 57, 435–443 (2018)

    Article  Google Scholar 

  22. DARCY, H. R. P. G. Les Fontaines Publiques de la volle de Dijon, Vector Dalmont, Paris (1856)

    Google Scholar 

  23. KHALED, A. R. A. and VAFAI, K. The role of porous media in modeling flow and heat transfer in biological tissues. International Journal of Heat and Mass Transfer, 46(26), 4989–5003 (2003)

    Article  MATH  Google Scholar 

  24. CHEN, D., MIOSHI, H., AKAI, T., and YAZAWA, T. Colorless transparent fluorescence material: sintered porous glass containing rare-earth and transition-metal ions. Applied Physics Letters, 86(23), 231908 (2005)

    Article  Google Scholar 

  25. ATTIA, H. A., ABDEEN, H. A. M., and ELBARAWY, M. M. Time varying rotating disk flow with heat transfer of a non-Newtonian fluid in porous medium. Kragujevac Journal of Science, 36, 33–40 (2014)

    Google Scholar 

  26. ALI, N., KHAN, S. U., SAJID, M., and ABBAS, Z. Slip effects in the hydromagnetic flow of a viscoelastic fluid through porous medium over a porous oscillatory stretching sheet. Journal of Porous Media, 20(3), 249–262 (2017)

    Article  Google Scholar 

  27. REDDY, P. S., SREEDEVI, P., and CHAMKHA, A. J. MHD boundary layer flow, heat and mass transfer analysis over a rotating disk through porous medium saturated b. Cu-water and Ag-water nanofluid with chemical reaction. Powder Technology, 307, 46–55 (2017)

    Article  Google Scholar 

  28. HASNAIN, J. and ABBAS, Z. Hydromagnetic convection flow in two immiscible fluids through a porous medium in an inclined annulus. Journal of Porous Medium, 20(11), 977–987 (2017)

    Article  Google Scholar 

  29. SIDDIQ, M. K., RAUF, A., SHEHZAD, S. A., ALSAEDI, A., and HAYAT, T. Interaction of convective and Nield-Kuznetsov’s conditions in hydromagnetic flow of nanofluid subject to Darcy-Forchheimer effects. Journal of Porous Media, 20(11), 989–998 (2017)

    Article  Google Scholar 

  30. SHEIKHOLESLAMI, M. Numerical simulation of magnetic nanofluid natural convection in porous media. Physics Letter A, 381, 494–503 (2017)

    Article  Google Scholar 

  31. SHEIKHOLESLAMI, M. and SHAMLOOEI, M. Magnetic source influence on nanofluid flow in porous medium considering shape factor effect. Physics Letter A, 381, 3071–3078 (2017)

    Article  Google Scholar 

  32. KHAN, S. U. and ALI, N. Thermophoresis and heat generation/absorption effects on magne-tohydrodynamic flow of Jeffrey fluid over porous oscillatory stretching surface with convective boundary conditions. Journal of Porous Media, 21(6), 555–576 (2018)

    Article  Google Scholar 

  33. SHEIKHOLESLAMI, M., LI, Z., and SHAFEE, A. Lorentz forces effect on NEPCM heat transfer during solidifications in a porous energy storage system. International Journal of Heat and Mass Transfer, 127, 655–674 (2018)

    Google Scholar 

  34. SHEIKHOLESLAMI, M. Influence of magnetic field on Al2O3-H2O nanofluid force convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM. Journal of Molecular Liquids, 263, 472–488 (2018)

    Article  Google Scholar 

  35. SHEIKHOLESLAMI, M. Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Computer Methods in Applied Mechanics and Engineering, 344, 306–318 (2019)

    Article  MathSciNet  Google Scholar 

  36. SHEIKHOLESLAMI, M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Computer Methods in Applied Mechanics and Engineering, 344, 319–333 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Shehzad.

Additional information

Citation: RAUF, A., ABBAS, Z., and SHEHZAD, S. A. Utilization of Maxwell-Cattaneo law for MHD swirling flow through oscillatory disk subject to porous medium. Applied Mathematics and Mechanics (English Edition), 40(6), 837–850 (2019) https://doi.org/10.1007/s10483-019-2488-9

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rauf, A., Abbas, Z. & Shehzad, S.A. Utilization of Maxwell-Cattaneo law for MHD swirling flow through oscillatory disk subject to porous medium. Appl. Math. Mech.-Engl. Ed. 40, 837–850 (2019). https://doi.org/10.1007/s10483-019-2488-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2488-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation