Skip to main content

Advertisement

Log in

The implantation of cartilaginous and periosteal tissue into growth plate defects

  • Published:
International Orthopaedics Aims and scope Submit manuscript

Summary

This experimental study reports the results of implantation of cartilaginous and periosteal tissues into growth plate defects in the tibiae of sheep. When no material was used, the defect rapidly filled with marrow-like tissue. When cartilage from the margin of the secondary centre of ossification was implanted, endochondral ossification continued and no shortening or deformity resulted. Implantation of periosteum with or without reconstructed peripheral tissues resulted in the formation of a bony bridge which led to a 32% inhibition of longitudinal growth and a 12° varus deformity in the absence of peripheral connective tissues. After reconstruction with these tissues, the inhibition of longitudinal growth was 47% with a 28° varus deformity. The chondroprogenitor cells in the implanted tissues cannot change phenotypic expression. Periosteum has a strong potential for bone formation after it has been implanted.

Résumé

L'excision d'une plaque de croissance partiellement fusionnée et son remplacement par interposition de différents tissus n'a permis de montrer ni re-formation ni réparation de la structure anatomique de cette zone. Dans cette étude expérimentale nous présentons les résultats de l'implantation de cartilage ou de périoste dans la perte de substance créée au niveau de la partie interne de la plaque de croissance tibiale sur un modèle animal ovin. Sans interposition la cavité est rapidement remplie par un tissu ayant quelques ressemblances avec la moëlle osseuse. Le cartilage, à la limite du centre secondaire d'ossification, continue le processus d'ossification enchondrale avec formation d'os nouveau; plus lentement cependant que dans la zone de croissance normale adjacente. Sans comblement, de même qu'après implantation de cartilage, il ne se produit ni raccourcissement, ni angulation du membre opéré. L'implantation de périoste, avec ou sans reconstruction des structures périphériques entraîne la formation d'un pont osseux notable. Il y a une inhibition de la croissance en longueur de 32% et une angulation en varus de 12° en l'absence de reconstruction des tissus périphériques. Il y a une inhibition de la croissance de 47% et une angulation de 28° dans l'éventualité inverse. Nous en concluons que les cellules chondroprogéniques du tissu implanté ne peuvent pas changer leur expression phénotypique. Le périoste a un potentiel remarquable pour induire la formation d'os nouveau après transposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amadio PC, Ehrlich MG, Mankin HJ (1983) Matrix synthesis in high density cultures of bovine epiphyseal plate chondrocytes. Connect Tiss Res 11: 11–19

    Google Scholar 

  2. Bright RW (1978) Surgical correction of partial growth plate closure, laboratory and clinical experience. Orthop Trans 2: 193

    Google Scholar 

  3. Bright RW (1982) Partial growth arrest: identification, classification, and results of treatment. Orthop Trans 6: 65

    Google Scholar 

  4. Broughton NS, Dickens DRV, Cole WG, Menelaus MB (1989) Epiphyseolysis for partial growth plate arrest. J Bone Joint Surg [Br] 71: 13–16

    Google Scholar 

  5. Buckwalter JA (1983) Proteoglycan structure in calcifying cartilage. Clin Orthop 172: 207–232

    Google Scholar 

  6. Byers S, Caterson B, Hopwood JJ, Foster BK (1992) Immunolocation analysis of glycosaminoglycans in the human growth plate. J Histochem Cytochem 40: 275–282

    Google Scholar 

  7. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9: 641–650

    Google Scholar 

  8. Cundy PJ, Jofe M, Zaleske DJ, Ehrlich MG, Mankin HJ (1991) Physeal reconstruction using tissue donated from early postnatal limbs in a murine model. J Orthop Res 9: 360–366

    Google Scholar 

  9. Foster BK (1989) Epiphyseal plate repair using fat interposition to reverse physeal deformity: an experimental study. Thesis, University of Adelaide, Australia

    Google Scholar 

  10. Foster BK (1991) The experimental basis for growth plate surgery. In: Menelaus M (ed) The management of limb inequality, Edinburgh, Churchill Livingstone, pp 109–120

    Google Scholar 

  11. Foster BK, Hansen AL, Gibson GJ, Hopwood JJ, Binns GF, Wiebkin O (1990) Reimplantation of growth plate chondrocytes into growth plate defects in sheep. J Orthop Res 8: 555–564

    Google Scholar 

  12. Gibson GJ, Francki TK, Hopwood JJ, Foster BK (1991) Human and sheep growth plate cartilage type X collagen synthesis and the influence of tissue storages. Biochem J 277: 513–520

    Google Scholar 

  13. Hansen AL, Foster BK, Gibson GJ, Binns GF, Wiebkin OW, Hopwood JJ (1990) Growth plate chondrocyte cultures for reimplantation into growth-plate defects in sheep. Clin Orthop 256: 286–297

    Google Scholar 

  14. Harada K, Oida S, Sasaki S (1988) Chondrogenesis and osteogenesis of bone marrow-derived cells by bone inductive factor. Bone 9: 177–183

    Google Scholar 

  15. Hert J (1972) Growth of the epiphyseal plate in circumference. Acta Anat 82: 420–436

    Google Scholar 

  16. Kawabe N, Ehrlich MG, Mankin HJ (1987) Growth plate reconstruction using chondrocyte allograft transplants. J Pediatr Orthop 7: 381–388

    Google Scholar 

  17. Kember NF (1960) Cell division in endochondral ossification: a study of cell proliferation in rat bones by the method of tritiated thymidine autoradiography. J Bone Joint Surg [Br] 42: 824–839

    Google Scholar 

  18. Klassen RA, Peterson HA (1951) Excision of physeal bars: The Mayo Clinic experience 1968–1978. Orthop Trans 6: 65

    Google Scholar 

  19. Lacroix P (1951) The organization of bones (English translation). J & A Churchill, London

    Google Scholar 

  20. Langenskjöld A (1967) The possibilities of eliminating premature partial closure of an epiphyseal plate caused by trauma or disease. Acta Orthop Scand 38: 267–279

    Google Scholar 

  21. Langenskjöld A (1981) Surgical treatment of partial closure of the growth plate. J Ped Orthop 1: 3–11

    Google Scholar 

  22. Langenskjöld A, Osterman K, Valle M (1987) Growth of fat grafts after operation for partial bone growth arrest: demonstration by computed tomography scanning. J Ped Orthop 7: 389–394

    Google Scholar 

  23. Lee EH, Gao GX, Bose K (1986) Experimental studies on the prevention of growth arrest in immature rabbits. J Bone Joint Surg [Br] 71: 726

    Google Scholar 

  24. Lennox DW, Goldner RD, Sussman MD (1983) Cartilage as an interposition material to prevent transphyseal bone bridge formation: an experimental model. J Ped Orthop 3: 207–210

    Google Scholar 

  25. Lucas PA, Syttestad GT, Caplan AI (1988) A water-soluble fraction from adult bone stimulates the differentiation of cartilage in explants of embryonic muscle. Differentiation 37: 47–52

    Google Scholar 

  26. Matsui Y, Alini M, Webber C, Poole AR (1991) Characterisation of aggregating proteoglycans from the proliferative, maturing, hypertrophic and calcifying zones of the cartilaginous physis. J Bone Joint Surg [Am] 73: 1064–1074

    Google Scholar 

  27. Nakahara H, Bruder SP, Goldberg VM, Caplan AI (1990) In vivo osteochondrogenic potential of cultured cells derived from the periosteum. Clin Orthop 259: 223–232

    Google Scholar 

  28. Nakahara H, Goldberg VM, Caplan AI (1991) Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J Orthop Res 9: 465–476

    Google Scholar 

  29. O'Driscoll SW, Keeley FW, Salter RB (1986) The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg [Am] 68: 1017–1034

    Google Scholar 

  30. Ogden JA (1982) Skeletal growth mechanism injury patterns. J Paediatr Orthop 2: 371–377

    Google Scholar 

  31. Ohgushi H, Goldberg VM, Caplan AI (1989) Heterotopic osteogenesis in porous ceramics induced by marrow cells. J Orthop Res 7: 568–578

    Google Scholar 

  32. Olin A, Creasman C, Shapiro F (1984) Free physeal transplantation in the rabbit. An experimental approach to focal lesions. J Bone Joint Surg [Am] 66: 7–20

    Google Scholar 

  33. Osterman K (1972) Operative elimination of partial epiphyseal closure: an experimental study. Acta Orthop Scand (Suppl) 147: 9–72

    Google Scholar 

  34. Rang M (1969) The growth plate and its disorders. Livingstone, Edinburgh London

    Google Scholar 

  35. Ranvier L (1873) Quelques faits relatifs au développement du tissu osseux. CR Acad Sci 77: 1105–1109

    Google Scholar 

  36. Salter RB, Harris WR (1963) Injuries involving the epiphyseal plate. J Bone Joint Surg [Am] 45: 587–622

    Google Scholar 

  37. Sandberg M, Aro H, Multimaki P, Aho H, Vuorio E (1989) In situ localization of collagen production by chondrocytes and osteoblasts in fracture callus. J Bone Joint Surg [Am] 71: 69–77

    Google Scholar 

  38. Seinsheimer F, Sledge CB (1991) Parameters of longitudinal growth rate in rabbit epiphyseal growth plates. J Bone Joint Surg [Am] 63: 627–632

    Google Scholar 

  39. Shapiro F, Holtrop ME, Glimcher MJ (1977) Organization and cellular biology of the perichondral ossification groove of Ranvier. J Bone Joint Surg [Am] 59: 703–723

    Google Scholar 

  40. Solomon L (1966) Diametric growth of the epiphyseal plate. J Bone Joint Surg [Br] 48: 170–177

    Google Scholar 

  41. Tonna EA (1961) The cellular component of the skeletal system studied autoradiographically with tritiated thymidine (H3TDR) during growth and aging. J Biophys Biochem Cytol 9: 813–824

    Google Scholar 

  42. Williamson RV, Staheli LT (1990) Partial physeal growth arrest: treatment by bridge resection and fat interposition. J Ped Orthop 10: 769–776

    Google Scholar 

  43. Wolohan MJ, Zaleske DJ (1991) Hemiepiphyseal reconstruction using tissue donated from fetal limbs in a murine model. J Orthop Res 9: 180–185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wirth, T., Byers, S., Byard, R.W. et al. The implantation of cartilaginous and periosteal tissue into growth plate defects. International Orthopaedics 18, 220–228 (1994). https://doi.org/10.1007/BF00188326

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00188326

Keywords

Navigation