Skip to main content
Log in

A mathematical analysis of a model for tumour angiogenesis

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In order to accomplish the transition from avascular to vascular growth, solid tumours secrete a diffusible substance known as tumour angiogenesis factor (TAF) into the surrounding tissue. Neighbouring endothelial cells respond to this chemotactic stimulus in a well-ordered sequence of events comprising, at minimum, of a degradation of their basement membrane, migration and proliferation. A mathematical model is presented which takes into account two of the most important events associated with the endothelial cells as they form capillary sprouts and make their way towards the tumour i.e. cell migration and proliferation. The numerical simulations of the model compare very well with the actual experimental observations. We subsequently investigate the model analytically by making some relevant biological simplifications. The mathematical analysis helps to clarify the particular contributions to the model of the two independent processes of endothelial cell migration and proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ausprunk, D. H., Folkman, J.: Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumour angiogenesis. Microvasc. Res. 14, 53–65 (1977)

    Google Scholar 

  • Balding, D., McElwain, D. L. S.: A mathematical model of tumour-induced capillary growth. J. theor. Biol. 114, 53–73 (1985)

    Google Scholar 

  • Chaplain, M. A. J., Sleeman, B. D.: A mathematical model for the production and secretion of tumour angiogenesis factor in tumours. IMA J. Math. Appl. Med. Biol. 7, 93–108 (1990)

    Google Scholar 

  • Chaplain, M. A. J., Stuart, A. M.: A mathematical model for the diffusion of tumour angiogenesis factor into the surrounding host tissue. IMA J. Math. Appl. Med. Biol. 8, 191–220 (1991)

    Google Scholar 

  • Chaplain, M. A. J., Stuart, A. M.: A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor. IMA J. Math. Appl. Med. Biol. 10, 149–168 (1993)

    Google Scholar 

  • Cliff W. J.: Observations on healing tissue: A combined light and electron microscopic investigation. Trans. Roy. Soc. London B246, 305–325 (1963)

    Google Scholar 

  • Deshpande, R. G., Shetna, Y. I.: Isolation and characterization of tumour angiogenesis factor from solid tumours and body fluids from cancer patients. Indian J. Med. Res. 90, 241–247 (1989)

    Google Scholar 

  • Folkman, J.: Tumor angiogenesis. Adv. Cancer Res. 19, 331–358 (1974)

    Google Scholar 

  • Folkman, J.: The vascularization of tumors. Sci. Am. 234, 58–73 (1976)

    Google Scholar 

  • Folkman, J., Klagsbrun, M.: Angiogenic factors. Science 235, 442–447 (1987)

    Google Scholar 

  • Gimbrone, M. A., Cotran, R. S., Leapman, S. B., Folkman, J.: Tumor growth and neovascularization: An experimental model using the rabbit cornea. J. Natn. Cancer Inst. 52, 413–427 (1974)

    Google Scholar 

  • Hiltman, P., Lory, P.: On oxygen diffusion in a spherical cell with Michaelis-Menten oxygen uptake kinetics. Bullet. Math. Biol. 45, 661–664 (1983)

    Google Scholar 

  • Jones, D. S., Sleeman, B. D.: Differential Equations and Mathematical Biology, London, George Allen & Unwin 1983

    Google Scholar 

  • Lin, S. H.: Oxygen diffusion in a spherical cell with nonlinear uptake kinetics. J. theor. Biol. 60, 449–457 (1976)

    Google Scholar 

  • Liotta, L. A., Saidel, G. M., Kleinerman, J.: Diffusion model of tumor vascularization and growth. Bull. Math. Biol. 39, 117–129 (1977)

    Google Scholar 

  • Lu, G., Sleeman, B. D.: Maximum principles and comparison theorems for semilinear parabolic systems and their applications. Proc. R. Soc. Edinb. 123A, 857–885 (1993)

    Google Scholar 

  • McElwain, D. L. S.: A re-examination of oxygen diffusion in a spherical cell with Michaelis-Menten oxygen uptake kinetics. J. theor. Biol. 71, 255–263 (1978)

    Google Scholar 

  • Maini, P. K., Myerscough, M. R., Winters, K. H., Murray, J. D.: Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern generation. Bull. Math. Biol. 53, 701–719 (1991)

    Google Scholar 

  • Murray, J. D.: Mathematical Biology. Berlin: Springer-Verlag 1989

    Google Scholar 

  • Muthukkaruppan, V. R., Kubai, L., Auerbach, R.: Tumor-induced neovascularization in the mouse eye. J. Natn. Cancer Inst. 69, 699–705 (1982)

    Google Scholar 

  • Paweletz, N., Knierim, M.: Tumor-related angiogenesis. Crit. Rev. Oncol. Hematol. 9, 197–242 (1989)

    Google Scholar 

  • Protter, M. H. and Weinberger, H. F.: Maximum principles in Differential Equations. Englewood Cliffs, NJ: Prentice-Hall 1967

    Google Scholar 

  • Reidy, M. A., Schwartz, S. M.: Endothelial regeneration. III. Time course of intimal changes after small defined injury to rat aortic endothelium. Lab. Invest. 44, 301–312 (1981)

    Google Scholar 

  • Schoefl, G. I.: Studies on inflammation III. Growing capillaries: Their structure and permeability. Virchows Arch. Pathol. Anat. 337, 97–141 (1963)

    Google Scholar 

  • Sherratt, J. A., Murray, J. D.: Models of epidermal wound healing. Proc. R. Soc. Lond. B 241, 29–36 (1990)

    Google Scholar 

  • Sholley, M. M., Gimbrone, M. A., Cotran, R. S.: Cellular migration and replication in endothelial regeneration. Lab. Invest. 36, 18–27 (1977)

    Google Scholar 

  • Sholley, M. M., Ferguson, G. P., Seibel, H. R., Montour, J. L., Wilson, J. D.: Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells. Lab. Invest. 51, 624–634 (1984)

    Google Scholar 

  • Stokes, C. L., Rupnick, M. A., Williams, S. K., Lauffenburger, D. A.: Chemotaxis of human microvessel endothelial cells in response to acidic fibroblast growth factor. Lab. Invest. 63, 657–668 (1990)

    Google Scholar 

  • Stokes, C. L., Lauffenburger, D. A.: Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. theor. Biol. 152, 377–403 (1991)

    Google Scholar 

  • Strydom, D. J., Fett, J. W., Lobb, L. R., Alderman, E. M., Bethune, J. L., Riordan, J. F., Vallee, B. L.: Amino acid sequence of human tumour derived angiogenin. Biochemistry 24, 5486–5494 (1985)

    Google Scholar 

  • Terranova, V. P., Diflorio, R., Lyall, R. M., Hic, S., Friesel, R., Maciag, T.: Human endothelial cells are chemotactic to endothelial cell growth factor and heparin. J. Cell Biol. 101, 2330–2334 (1985)

    Google Scholar 

  • Warren, B. A.: The growth of the blood supply to melanoma transplants in the hamster cheek pouch. Lab. Invest. 15, 464–473 (1966)

    Google Scholar 

  • Williams, S. K.: Isolation and culture of microvessel and large-vessel endothelial cells; their use in transport and clinical studies. In: Microvascular Perfusion and Transport in Health and Disease (Ed. McDonagh, P.) pp. 204–245. Basel: Karger 1987

    Google Scholar 

  • Winter, G. D.: Epidermal regeneration studied in the domestic pig. In: Epidermal Wound Healing (Eds. Maibach, H. I. and Rovee, D. T.) pp. 71–112. Chicago: Year Book Med. Publ 1972

    Google Scholar 

  • Wright, N. A.: Cell proliferation kinetics of the epidermis. In: Biochemistry and Physiology of the Skin (Ed. Goldsmith, L. A.) pp. 203–229. Oxford University Press 1983

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaplain, M.A.J., Giles, S.M., Sleeman, B.D. et al. A mathematical analysis of a model for tumour angiogenesis. J. Math. Biol. 33, 744–770 (1995). https://doi.org/10.1007/BF00184647

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00184647

Key words

Navigation