Skip to main content
Log in

Aqueous humour formation

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Summary

The effects of a number of metabolic inhibitors on aqueous formation in rabbits are described: These are discussed in the light of experimental findings and explanatory hypotheses about the process of aqueous humour formation which are briefly reviewed.

The evidence for active sodium transport is examined and it is shown that support for this hypothesis may arise from experiments using isolated ciliary epithelial tissue in vitro.

Aqueous formation is inhibited by fluoroacetate, dinitrophenol and ouabain whilst the composition of the aqueous undergoes little change. The composition may, however, readily by changed by alterations of plasma osmolarity, and it is suggested that the rate of secretion depends upon:

  1. a)

    the rate of active Na transport

  2. b)

    the plasma osmolarity.

Active Na transport is oxygen dependent and subject to inhibition by citrate cycle inhibitors such as malonate and fluoroacetate and by ouabain which inhibits Na+ - K+ - Mg-activated ATP-ase.

Histochemical and biochemical studies on ciliary epithelium suggest that the enzymes succinate dehydrogenase, Na-K-Mg-activated ATP-ase and cytochrome oxidase occur predominantly in the non-pigmented cell layer of the epithelium. It is postulated that the systems: citrate cycle, oxidative phosphorylation, ATP synthesis furnish the substrate for Na-K-Mg-activated ATP-ase which is responsible for extruding sodium from the epithelial cell into the posterior chamber. This system appears co-terminous with the non-pigmented epithelium.

Glycolysis rates in ciliary epithelium are high, but are not efficient as sources of energy for Na transport. The histochemistry suggests that glycolysis may be associated particularly with the ciliary pigment epithelium.

The effects on aqueous secretion of a number of other substances (aldosterone antagonists, agents with selective toxicity to retinal pigment epithelium) are described and discussed, and a conjectural account is given of the metabolism of the ciliary epithelium.

In the final section an hypothesis is advanced which attempts to take account of the role of the ciliary pigment epithelium in aqueous production. It is thought that this layer may function as an electrically charged membrane, the charge being maintained from cell metabolism and acting as a ‘permselective filter’ influencing the final result of the active ‘Na-pump’ in the non-pigmented cell layer.

In an appendix a description is given of a procedure used to determine the surface area of the ciliary epithelium in rabbits.

Résumé

Les effets d'un certain nombre de substances qui inhibent chez le lapin le métabolisme lors de la formation de l'humeur aqueuse sont décrits. On discute ces effets à la lumière de constatations expérimentales et d'hypothèses expliquant le mécanisme de la formation de l'humeur aqueuse.

On examine le transport actif du sodium, et l'on montre que cette hypothèse peut être appuyée par des expériences dans lesquelles on emploie du tissu épithélial ciliaire isolé in vitro.

La formation de l'humeur aqueuse est empêchée par l'acétate de fluor, le dinitrophénol et l'ouabaine, tandis que la composition de l'humeur aqueuse ne subit que peu de changement. Cependant, la composition peut être changée facilement par une modification de la molarité du plasma, et l'on suggère que le taux de sécrétion dépend:

  1. a)

    du taux de transport actif du sodium;

  2. b)

    de la molarité du plasma.

Le transport actif du sodium dépend de l'oxygène et il est soumis à l'action des corps inhibiteurs du cycle citrique tels que le malonate et l'acétate de fluor, et l'ouabaine qui empêche l'action de l'ATP-ase activé par Na+ - K+ - Mg.

Des études histochimiques et biochimiques sur l'épithélium ciliaire suggèrent que la succino-déhydrogenase, l'ATP-ase Na-K-Mg-activé et la cytochrome oxydase se trouvent d'une manière prédominante dans la couche des cellules non-pigmentées de l'épithelium. On admet que le système: cycle citrique, phosphorylation oxydative, synthèse de l'ATP fournit le substrat pour l'ATP-ase Na-K-Mg-activé et que celui-ci est chargé de la sortie du sodium hors de la cellule épithéliale vers la chambre postérieure. Il semble que ce système est localisé dans l'épithélium non-pigmenté.

L'importance de la glycolyse dans l'épithélium ciliaire est grande mais elle n'est pas efficace comme source d'énergie pour le transport du Na. L'histochimie fait penser que la glycolyse peut être associée particulièrement à l'épithélium ciliaire du pigmenté.

On décrit et discute les effets sur la sécrétion aqueuse d'un certain nombre d'autres substances (antagonistes de l'aldostérone, agents sélectivement toxiques pour l'épithélium pigmenté ciliaire), et on en déduit quel doit être le métabolisme de l'épithélium ciliaire.

Dans la partie finale on émet une hypothèse qui tâche de tenir compte du rôle de l'épithélium ciliaire pigmenté dans la production de l'humeur aqueuse. On pense que cette couche peut fonctionner comme membrane chargée électriquement, la charge étant maintenue par le métabolisme de la cellule. Elle agirait comme un ‘filtre permsélectif’, et influerait sur le résultat final de la ‘pompe-Na’ dans la couche non-pigmentée.

Dans un appendice on décrit une méthode destinée à mesurer la superficie de l'épithélium ciliaire chez le lapin.

Zusammenfassung

Es wird eine Anzahl von Stoffwechselhemmern der Kammerwasserproduktion beim Kaninchen beschrieben: Diese werden im Licht der experimentellen Befunde und der erläuternden Hypothesen über den Prozess der Kammerwasserproduktion, die kurz durchgesehen werden, erörtert.

Der Beweis für einen aktiven Natriumtransport wird geprüft, und es wird gezeigt, dass diese Hypothese möglicherweise durch Experimente mit isoliertem Epithelgewebe vom Ciliarkörper in vitro gestützt werden könnte.

Kammerwasserproduktion wird von Fluoracetat, Dinitrophenol und Ouabain gehemmt, während die Zusammensetzung des Kammerwassers sich wenig verändert. Die Zusammensetzung kann jedoch durch Änderungen der Plasmaosmolarität leicht verändert werden, und es wird angenommen, dass die Sekretionsgrösse a) von dem Ausmass des aktiven Natriumtransportes und b) von der Plasmaosmolarität abhängt.

Aktiver Natriumtransport ist sauerstoffbedingt und unterliegt einer Hemmung durch Inhibitionen des Zitronensäurezyklus wie Malonat und Fluoracetat und Ouabain, welches die Na+-K+-Mg-aktivierte ATP-ase hemmt.

Histochemische und biochemische Untersuchungen am Ciliarepithel lassen vermuten, dass die Enzyme Succinatdehydrogenase, Na-K-Mg-aktivierte ATP-ase und Cytochromoxydase vorwiegend in der pigmentfreien Zellage des Epithels vorkommen. Es wird postuliert, dass die Systeme Zitratzyklus, oxydative Phosphorylation, ATP-Synthese das Substrat für die Na-K-Mg-aktivierte ATP-ase bilden, welches für die Verdrängung vom Natrium aus den Epithelzellen in die hintere Augenkammer verantwortlich ist. Dieses System scheint mit dem pigmentfreien Epithel zusammenzufallen.

Die Glykolyserate im Ciliarepithel ist zwar gross, ist aber als Energiequelle für den Natriumtransport nicht genug wirksam. Es lässt sich auf Grund der Histochemie vermuten, dass Glykolyse besonders mit dem Pigmentepithel des Ciliarkörpers verbunden ist.

Es werden die Wirkungen einer Anzahl anderer Substanzen (Aldosteron Antagonisten, Agenzien mit selektiver auf das Pigmentepithel gerichteter Toxizität) auf die Kammerwassersekretion beschrieben und erörtert, und ein Bericht über den mutmasslichen Stoffwechsel des Ciliarepithels erteilt.

Im letzten Abschnitt wird eine Hypothese vorgeschlagen, welche die Rolle des Ciliarepithels bei der Kammerwasserproduktion in Rechnung zu stellen versucht. Es wird angenommen, dass diese Zellschicht als eine elektrisch geladene Membran funktioniere, deren Ladung vom Zellstoffwechsel aufrechterhalten werde, und die als ein ‘permselektives Filter’ wirken und so das Endresultat der aktiven ‘Natriumpumpe’ im pigmentfreien Zellager beeinflussen könnte.

In einem Anhang wird ein Verfahren beschrieben, die Oberfläche des Ciliarepithels beim Kaninchen zu bestimmen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliographie

  • Abe, T. & K.komura. Experimente über den Kammerwasserwechsel, besonders über den Einfluss des Lidschlags auf denselben. Von Graefes Arch. Ophthal. 121, 304–328 (1929).

    Google Scholar 

  • Ambrosio, A. Comportamento della riserva alcalina dei liquidi oculari nel corso di degenerazione sperimentale retinica da iodato di sodio. G. ital. Oftal., 9, 636–643 (1956).

    Google Scholar 

  • Ames, CA. (III). 1st International Symposium on the Biochemistry of the Retina. (ed. C. Graymore) London: Academic Press. (In preparation) (1964).

  • — & B. s.gurian. Electrical Recordings from Isolated Mammalian Retina Mounted as a Membrane. A.M.A. Arch. Ophthal., 70, 837–841 (1963).

    Google Scholar 

  • —. Studies on Water and Electrolytes in Nervous Tissue. (I). J. Neurophysiol., 19, 201–212 (1956a).

    Google Scholar 

  • —. Studies on Water and Electrolytes in Nervous Tissue. (II). J. Neurophysiol., 19, 213–223 (1956b).

    Google Scholar 

  • Andersen, B., cited in H. H. Ussing. XXI Congr. Int. de Ciencias Fisiologicas Buenos Aires 9–15th Aug. 1959 (1959).

  • Ascher, K. W. In: Tabulae Biologicae Vol. XXII (oculus) pars la. Amsterdam: W. Junk. 1947 (1937).

    Google Scholar 

  • Baillart, P. La circulation rétinienne dans le glaucome. Ann. Oculist. 159, 432–441 (1922).

    Google Scholar 

  • — & A.magitot. Recherches sur les vasomoteurs oculaires et sur la pression sanguine comparée des vaisseaux de l'iris et de la rétine. C. R. Soc. Biol. 84, 386–387 (1921)

    Google Scholar 

  • Ballintine, E. J. & L.peters. Effects of Intracarotid Injection of a Basic Dye on the Ciliary Body. Amer. J. Ophthal. 38, 153–163 (1954).

    Google Scholar 

  • — & M.waitzman. Oxidative Phosphorylation by Ciliary Processes. Amer. J. Ophthal. 42, 349–356 (1956).

    Google Scholar 

  • Bárány, E. A Mathematical Formulation of Intraocular Pressure as Dependent on Secretion, Ultrafiltration, Bulk Outflow and Osmotic Reabsorption of Fluid. Invest. Ophthal. 2, 584–590 (1963).

    Google Scholar 

  • — & V. e.kinsey. The Rate of Flow of Aqueous Humour, (I). Amer. J. Ophthal. 32, 177–178 (1949).

    Google Scholar 

  • Baurmann, M. Vergleichende Blutdruckmessungen an den Gefässen des Auges. von Graefes Arch. Ophthal. 118, 118–130 (1927).

    Google Scholar 

  • — Ueber das Ciliarfortsatzgefä\system. Ber. dtsch. ophthal. Ges. 48, 364–371 (1930).

    Google Scholar 

  • Becker, B. Hypothermia and Aqueous Humour Dynamics of the Rabbit Eye. Trans. Amer. ophthal. Soc. 51, 1047–1051 (1960).

    Google Scholar 

  • — The Turnover of Iodide in the Rabbit Eye. A.M.A. Arch. Ophthal. 65, 832–836 (1961a).

    Google Scholar 

  • — The Turnover of Bromide in the Rabbit Eye. A.M.A. Arch. Ophthal 65, 837–839 (1961b).

    Google Scholar 

  • — Iodide Transport by the Rabbit Eye. Amer. J. Physiol. 200, 804–806 (1961c).

    Google Scholar 

  • — The Measurement of Rate of Aqueous Flow with Iodide. Invest. Ophthal. 1, 52–58 (1962).

    Google Scholar 

  • — Ouabain and Aqueous Humour Dynamics in the Rabbit Eye. Invest. Ophthal. 2. 325–331 (1963).

    Google Scholar 

  • — & M. a.constant. Experimental Tonography; Effect of Carbonic Anhydrase Inhibitor Acetazoleamide on Aqueous Flow. A.M.A. Arch. Ophthal. 54, 321–329 (1955).

    Google Scholar 

  • — Facility of Aqueous Outflow; Comparison of Tonography and Perfusion Measurements In Vivo and In Vitro. A.M.A. Arch. Ophthal. 55, 305–312. (1956).

    Google Scholar 

  • — & M.forbes. Iodopyracet (Diodrast) Transport by the Rabbit Eye. Amer. J. Physiol. 200, 461–464 (1961).

    Google Scholar 

  • Berggren, L. Intracellular Potential Measurements from the Ciliary Processes of the Rabbit Eye In Vivo and In Vitro. Acta physiol. scand. 48, 461–470 (1960).

    Google Scholar 

  • Berliner, R. W. Some Aspects of Ion Exchange in Electrolyte Transport by the Renal Tubules in: Metabolic Aspects of Transport Across Cell Membranes. (ed. Q. R. Murphy) p. 203–220. Madison, Wn.: University of Wisconsin Press (1957) (1955).

    Google Scholar 

  • —, T. j.kennedy & J.orloff. Relationship Belween Acidification of the Urine and Potassium Metabolism. Amer. J. Med. 11, 274–282 (1951).

    Google Scholar 

  • Bernstein, J. Untersuchungen zur Thermodynamik der bio-elektrischen Ströme. Arch. Physiol. 92, 521–562 (1902).

    Google Scholar 

  • Beyer, K. H. Renal Transport of Organic Compounds, in: Metabolic Aspects of Transport Across Cell Membranes. (ed. Q. R. Murphy). p. 263–273. Madison, Wn.: University of Wisconsin Press (1957) (1955).

    Google Scholar 

  • Bill, A. A Method for Qualitative Determination of Blood Flow Through the Cat Uvea. A.M.A. Arch. Ophthal. 67, 156–162 (1962a).

    Google Scholar 

  • — Calorimetric Procedures for the Study of the Blood Flow through the Ciliary Region and the Choroid in Rabbits. Acta ophthal. Kbh. 40, 131–148 (1962b).

    Google Scholar 

  • — Blood Pressure in the Ciliary Arteries of Rabbits. Exp. Eye Res. 2, 20–24 (1963).

    Google Scholar 

  • Blond, D. M. & R.whittam. The Regulation of Kidney Respiration by Sodium and Potassium Ions. Biochem. j. 92, 158–167 (1964).

    Google Scholar 

  • Bonting, S. L. & B.becker. Studies on Na-K-activated Adenosinetriphosphatase. XIV. Invest. Ophthal. 3, 523–533 (1964).

    Google Scholar 

  • — & L. l.caravaggio. Studies on Sodium-Potassium-Activated Adenosinetriphos-phatase, V. Arch. Biochem. Biophys. 101, 37–46 (1963).

    Google Scholar 

  • — & N. m.hawkins. Studies on Sodium-Potassium-Activated Adenosinetri-phosphatase, IV. Correlation with Cation Transport Sensitive to Cardiac Glycosides. Arch. Biochem. Biophys. 98, 413–419 (1962).

    Google Scholar 

  • — Studies on Sodium-Potassium-Activated Adenosinetriphosphatase, VI. Arch. Biochem. Biophys. 101, 47–55 (1963).

    Google Scholar 

  • —. Studies on Sodium-Potassium-Activated Adenosinetriphosphatase, X. Exp. Eye Res. 3, 47–56 (1964).

    Google Scholar 

  • —, K. a.simon & N. m.hawkins. Studies on Sodium-Potassium-Activated Adenosinetriphosphatase, I. Arch. Biochem. Biophys. 95, 416–423 (1961).

    Google Scholar 

  • Boyle, P. J. & E. j.conway. Potassium Accumulation in Muscle and Associated Changes. J. Physiol. 100, 1–63 (1941).

    Google Scholar 

  • Bradford, H. F., P. d.swanson & D. b.gammack. Constituents of a Microsomal Fraction from the Mammalian Brain: their Solubilization, Especially by Detergents. Biochem. j. 92, 247–254 (1964).

    Google Scholar 

  • Brückner, R. Ueber Atmung und anaerobe Glykolyse in Geweben der Rinderuvea. Ophthalmologica (Basel) 109–110, 19–31 (1945).

    Google Scholar 

  • Buffa, P. & R. a.peters. The In Vivo Formation of Citrate Induced by Fluoroacetate and its Significance. J. Physiol. 110, 488–500 (1949).

    Google Scholar 

  • Cameron, E. & D. f.cole. Succinic Dehydrogenase in the Rabbit Ciliary Epithelium. Exp. Eye Res. 2, 25–27 (1963).

    Google Scholar 

  • Campbell, P. N., C.cooper & M.hicks. Studies on the Role of the Morphological Constituents of the Microsome Fraction from Rat Liver in Protein Synthesis. Biochem. j. 92, 225–234 (1964).

    Google Scholar 

  • Capek, K. & a. kleinzeller. in Čs. fysiol. 9, 6. Cited by capek in: Membrane Transport and Metabolism, p. 305. Ed. A. Kleinzeller & A. Kotyk. London: Academic Press 1961 (1960).

  • Carey, M. J. & E. j.conway. Comparison of Various Media for Immersing Frog Sartorii at Room Temperature, and Evidence for the Regional Distribution of Fibre Na+. J. Physiol. 125, 232–250 (1954).

    Google Scholar 

  • — & R. p.kernan. Secretion of Sodium Ions by the Frog's sartorius. J. Physiol. 148, 51–82 (1959).

    Google Scholar 

  • Cella, J. A. & C. m.kagawa. Steroidal Lactones. J. Amer. chem. Soc. 79, 4808–4809 (1957).

    Google Scholar 

  • Cohan, B. E. & S. b.coran. Flow and Oxygen Saturation of Blood in the Anterior Ciliary Vein of the Dog Eye. Amer. J. Physiol. 205, 60–66 (1963a).

    Google Scholar 

  • — Anterior Ciliary Venous Blood Flow and Oxygen Saturation at Reduced Arterial Pressure. Amer. J. Physiol. 205, 67–70. (1963b).

    Google Scholar 

  • Cohen, L. H. & W. k.noell. Glucose Catabolism of Rabbit Retina Before and After Development of Visual Function. J. Neurochem. 5, 253–275. (1960)

    Google Scholar 

  • Cole, D. F. Some Effects of Decreased Plasma Sodium Concentration on the Composition and Tension of the Aqueous Humour. Brit. J. Ophthal. 43, 268–287 (1959).

    Google Scholar 

  • — Rate of Entrance of Sodium into the Aqueous Humour of the Rabbit. Brit. J. Ophthal. 44, 225–242 (1960a).

    Google Scholar 

  • — Effects of some Metabolic Inhibitors Upon the Formation of the Aqueous Humour in Rabbits. Brit. J. Ophthal. 44, 739–750 (1960b).

    Google Scholar 

  • — Electrochemical Changes Associated with the Formation of the Aqueous Humour. Brit. J. Ophthal. 45, 202–217 (1961a).

    Google Scholar 

  • — Prevention of Experimental Ocular Hypertension with Polyphloretin Phosphate. Brit. J. Ophthal. 45, 482–489 (1961b).

    Google Scholar 

  • — Electrical Potential across the Ciliary Body Observed in vitro. Brit. J. Ophthal. 45, 641–653 (1961c).

    Google Scholar 

  • — Transport across the Isolated Ciliary Body of Ox and Rabbit. Brit. J. Ophthal. 46, 577–591 (1962a).

    Google Scholar 

  • — Reduction in Aqueous Humour Formation as Caused by Iodate, Spirolactone and Polyphloretin Phosphate. Brit. J. Ophthal. 46, 291–303 (1962b).

    Google Scholar 

  • — Utilization of Carbohydrate Metabolites in the Rabbit Ciliary Epithelium. Exp. Eye Res. 2, 284–295 (1963).

    Google Scholar 

  • — Location of Ouabain-sensitive Adrenosinetriphosphatase in Ciliary Epithelium. Exp. Eye Res. 3, 72–75 (1964).

    Google Scholar 

  • — Citrate Cycle and Active Sodium Transport in Rabbit Ciliary Epithelium. Exp. Eye Res. 4, 211–222 (1965).

    Google Scholar 

  • Colle, J., P. m. dukeelder & W. s. dukeelder. Studies on the Intraocular Pressure, I. J. Physiol. 71, 1–30 (1931).

    Google Scholar 

  • Conway, E. J. The Physiological Significance of Inorganic Levels in the Internal Medium of Animals. Biol. Rev., Cambridge phil. Soc., 20, 56–72 (1945).

    Google Scholar 

  • Conway, E. J. Exchanges of K, Na and H Ions Between the Cell and its Environment. Irish J. med. Sci. (Oct.–Nov.) (1947).

  • — The Biochemistry of Gastric Acid Secretion. C. C. Thomas, Springfield, Ill. 1953 (1953a).

    Google Scholar 

  • Conway, E. J. International Review of Cytology, (ed. G. H. Bourne & J. F. Dcanielli) vol. 2. p. 419 (1953b).

  • — Some Aspects of Ion Transport Through Membranes. Symp. Soc. exp. Biol. 8, 297–324 (1954).

    Google Scholar 

  • Conway, E. J. International Review of Cytology, (ed. G. H. Bourne & J. F. Danielli) 4, p. 377 (1955).

  • Conway, E. J. In Metabolic Aspects of Transport Across Membranes, (ed. Q. R. Murphy), p. 73–114. Madison: University of Wisconsin Press (1955) (1957a).

  • — Nature and Significance of Concentration Relations of Potassium and Sodium Ions in Skeletal Muscle. Physiol. Rev. 37, 84–132 (1957b).

    Google Scholar 

  • — & P. j.boyle. A Mechanism for the Concentrating of Potassium by Cells, with Experimental Verification for Muscle. Nature (Lond.), 144, 709–710 (1939).

    Google Scholar 

  • — & M.mullaney. The Anaerobic Secretion of Sodium Ions from Skeletal Muscle, in: Membrane Transport and Metabolism, (ed. A. Kleinzeller & A. Kotyk), p. 117–130. London: Academic Press (1961) (1960).

    Google Scholar 

  • Copeland, R. L. & V. e.kinsey. Determination of Volume of Posterior Chamber of the Rabbit's Eye. Arch. Ophthal. 44, 515–516 (1950).

    Google Scholar 

  • Crapper, D. R. C. V. Paganelli, & W. K. Noell. Abstr. Commun. XX Internat. Congr. Physiol. Leiden, 1962 (1962).

  • Curran, P. F. & A. k.solomon. Ion and Water Fluxes in the Ileum of Rats. J. gen. Physiol. 41, 143–168 (1958).

    Google Scholar 

  • Davson, H. The Penetration of Large Water Soluble Molecules into the Aqueous Humour. J. Physiol. 122, 10P (1953).

  • — Vertebrate Physiology from the Point of View of Active Transport. Symp. Soc. exp. Biol. 8, 16–26 (1954).

    Google Scholar 

  • — A Comparative Study of the Aqueous Humour and Cerebrospinal Fluid in the Rabbit. J. Physiol. 129, 111–133 (1955).

    Google Scholar 

  • — The Physiology of Intraocular and Cerebrospinal Fluids. London: J. &. A. Churchill, 1956 (1956).

    Google Scholar 

  • davson, H. in: The Eye, (ed. H. Davson) 1, p. 147. London: Academic Press (1962).

  • W. S. Dukeelder & G. h.benham. Ionic Equilibrium Between the Aqueous Humour and Blood Plasma of Cats. Biochem. j. 30, 773–775 (1936).

    Google Scholar 

  • — & D. m.maurice, Changes of Ionic Distribution following Dialysis of Aqueous Humour Against Plasma. J. Physiol. 109, 32–40 (1949).

    Google Scholar 

  • — & A.huber. Experimental Hypertensive Uveitis in the Rabbit. Ophthalmologica (Basel) 120, 118–124 (1950).

    Google Scholar 

  • — & P. a.matchett. The Kinetics of Penetration of the Blood Aqueous Barrier. J. Physiol. 122, 11–32 (1953).

    Google Scholar 

  • — & C.purvis. Cryoscopic Apparatus Suitable for Studies on Aqueous Humour and Crebrospinal Fluid. J. Physiol. 124, 12P-13P. (1954)

    Google Scholar 

  • — & J. p.quilliam. The Permeability of the Blood-Aqueous Humour Barrier to Potassium, Sodium and Chloride in the Surviving Eye. J. Physiol. 98, 141–154 (1940).

    Google Scholar 

  • Dean, R. B. Theories of Electrolyte Equilibrium in Muscle. Biological Symposia. 3, 331–348 (1941).

    Google Scholar 

  • deroetth, A. Jr. Respiration of the Ciliary Processes. A.M.A. Arch. Ophthal. 50, 491–499 (1953).

    Google Scholar 

  • — Glycolytic Activity of Ciliary Processes. A.M.A. Arch. Ophthal. 51, 599–608 (1954).

    Google Scholar 

  • — Metabolism of the Alloxan Diabetic Rat Retina. Trans. Amer. ophthal. Soc. 61, 429–458 (1963).

    Google Scholar 

  • — & Yan Fenpei. Metabolism of the Alloxan Diabetic Rat Retina. A.M.A. Arch. Ophthal. 71, 73–76 (1964).

    Google Scholar 

  • Deul, D. H. & H.mcIlwain. Activation and Inhibition of Adenosinetriphosphatases of Subcellular Particles from the Brain. J. Neurochem. 8, 246–256 (1961).

    Google Scholar 

  • Diczfaluzy, E., O.ferno, H.fex, B.hogeberg, T.linderot & T.rosenberg. Synthetic High Molecular Weight Enzyme Inhibitors I. Acta chem. scand. 7, 913–920 (1953).

    Google Scholar 

  • Dieter, H. Über den Zusammenhang zwischen osmotischem Druck, Blutdruck, Kapillardruck und Augendruck. Arch. Augenhlk. 96, 179–186 (1925).

    Google Scholar 

  • Duke Elder, W. S. The Arterial Pressure in the Eye. J. Physiol. 62, 1–12 (1926a).

    Google Scholar 

  • — The Reaction of the Intraocular Pressure to Osmotic Variation in the Blood. Brit. J. Ophthal. 10, 1–29 (1926b).

    Google Scholar 

  • — Textbook of Ophthalmology, Vol. 1. (1st ed.) London: H. Kimpton 1932 (1932).

    Google Scholar 

  • — The Dialysation of the Intraocular Fluids. Brit. J. Ophthal. 21, 577–584 (1937).

    Google Scholar 

  • — & D. m.maurice. Symbols of Ocular Dynamics. Brit. J. Ophthal. 41, 702–703 (1957).

    Google Scholar 

  • Duke Elder, P. M. & W. S. Dukeelder. Studies on the Intra-ocular Pressure. II. J. Physiol. 71. 268–274 (1931).

    Google Scholar 

  • Emmert, E. Vergleichend-anatomische Untersuchungen über Grössen und Gewichtsverhältnisse des Augapfels unserer Haustiere und seiner Bestandteile. Zt. vgl. Augenheilk. 4, 40–70 (1886).

    Google Scholar 

  • Fahmy, A. R., & E. O'f.walsh. The Quantitative Determination of Dehydrogenase Activity in Cell Suspensions. Biochem. j. 51, 55–56 (1952).

    Google Scholar 

  • Farah, A. Renal Transport of Organic Compounds, in: Metabolic Aspects of Transport Across Cell Membranes, (ed. Q. R. Murphy) p. 257–263. Madison, Wn.: University of Wisconsin Press 1957 (1955).

    Google Scholar 

  • Fenn, W. O. The Role of Potassium in Physiological Processes. Physiol. Rev. 20, 377–415 (1940).

    Google Scholar 

  • Ferry, J. D. Ultrafilter Membranes and Ultrafiltration. Chem. Rev. 18, 373–455 (1936).

    Google Scholar 

  • Fine, B. S. & L. e.zimmerman. Light and Electron Microscopic Observations on the Ciliary Epithelium in Man and Rhesus Monkey. Invest. Ophthal. 2, 105–137 (1963).

    Google Scholar 

  • Fischer, F. P. Ein Versuch den Energiewechsel des Auges zu bestimmen. Ber. dtsch. ophthal. Ges. 48, 95–99 (1930).

    Google Scholar 

  • — Elektrostatische Messungen am lebenden Auge. Arch. Augenheilk. 106, 428–450. (1932).

    Google Scholar 

  • Forbes, M. & B.becker. The Transport of Organic Anions by the Rabbit Ciliary Body. IV. Amer. J. Ophthal. 51, 1047–1051 (1961).

    Google Scholar 

  • Frazier, H. S. The Electrical Potential Profile of the Isolated Toad Bladder. J. gen. Physiol. 45, 515–528 (1962).

    Google Scholar 

  • Dempsey, E. F. & A.leaf. Movement of Sodium Across the Mucosal Surface of the Isolated Toad Bladder and its Modification by Vasopressin. J. gen. Physiol. 45, 529–543 (1962).

    Google Scholar 

  • Friedenwald, J. S. The Formation of the Intraocular Fluid. Amer. J, Ophthal. 32, 9–27 (1949).

    Google Scholar 

  • — & B.becker. Aqueous Humour Dynamics; theoretical Considerations. A.M.A. Arch. Ophthal. 54, 799–815 (1955).

    Google Scholar 

  • —, Buschke, W. & Michel, H. O. Role of Ascorbic Acid (Vitamin C) in Secretion of Intraocular Fluid. Arch. Ophthal. 29, 535–570 (1943).

    Google Scholar 

  • — & H.herrmann. Enzymatic Oxidations in Tissue Fractions of Ciliary Processes. Bull. Johns Hopkins Hosp. 78, 119–125 (1946).

    Google Scholar 

  • — & R.buka. Distribution of Certain Oxidative Enzymes in Choroid Plexus. Bull. Johns Hopkins Hosp. 80, 1–13 (1942).

    Google Scholar 

  • — & R.moses. The Distribution of Certain Oxidative Enzymes in the Ciliary Body. Bull. Johns Hopkins Hosp. 73, 421–434 (1943).

    Google Scholar 

  • — & H. f.pierce. The Respiratory Function of the Aqueous. Trans. Amer. ophthal. Soc. 31, 143–146 (1933).

    Google Scholar 

  • — & R. o.stiehler. Circulation of the Aqueous, VII. A Mechanism of Secretion of the Intra-Ocular Fluid. Arch. Ophthal. 20, 761–786 (1938).

    Google Scholar 

  • Friedman, E., H. h.kopold & T. r.smith. Retinal and Choroidal Blood Flow Determined with Krypton-85 Anaesthetized Animals. Invest. Ophthal. 3, 539–547 (1964).

    Google Scholar 

  • Friedman, M., F. w.newell, G. v.leroy & G. t.okita. The Steady-state Turnover of Tritiated Water. Amer. J. Ophthal. 44, 375–378 (1957).

    Google Scholar 

  • Fries, B. Polyphloretin Phosphate; a Hyaluronidase Inhibitor and HyaluronidasePerimental Study in the Rabbit. Acta chir. scand. Suppl. 217, p. 1–97 (1956).

    Google Scholar 

  • — The Edema-inhibiting Action of Polyphloretin Phosphate (PPP) in some Types of Capillary Damage. An Experimental Investigation. Acta chir. scand. 119, 1–7 (1960).

    Google Scholar 

  • Futterman, S. & J. h.kinoshita. Metabolism of the Retina, II. J. biol. Chem. 234, 3174 (1959).

    Google Scholar 

  • Gemolotto, G. Ricerche sul contenuto in glucosio ed acido ascorbico dell'umor acqueo del coniglio nel corso della degenerazione sperimentale da iodato di sodio. Rass. ital. Ottal. 21, 263–271 (1952).

    Google Scholar 

  • — Ulteriori ricerche sul contenuto in glucoso ed acido ascorbico dell'umore acqueo e richerche elettroforetiche sul crystallino di coniglio con degenerazione corioretinica sperimentale da iodato di sodio. G. ital. Oftal. 7, 75–79 (1954).

    Google Scholar 

  • Giebisch, G. Measurements of Electrical Potentials and Ion Fluxes on Single Renal Tubules. Circulation. 21, 879–891 (1960).

    Google Scholar 

  • Glock, G. E. & P.mcLean. Further Studies on the Properties and Assay of Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase of Rat Liver. Biochem. j. 55, 400–408 (1953).

    Google Scholar 

  • Glynn, I. M. Lipid Sodium and Potassium Movements in Human Red Cells. J. Physiol. 126, 35P (1954).

    Google Scholar 

  • — The action of Cardiac Glycosides on Sodium and Potassium Movements of Human Red Cells. J. Physiol. 136, 148–173 (1957).

    Google Scholar 

  • Goldmann, H. Über Fluorescein in der menschlichen Vorderkammer. Ophthalmologica, Basel. 119, 65–95 (1950).

    Google Scholar 

  • Grant, W. M. Tonographic Method for Measuring the Facility and Rate of Aqueous Flow in Human Eyes. Arch. Ophthal. 44, 204–214 (1950).

    Google Scholar 

  • Gubler, C. J. Studies on the Physiological Functions of thiamine, i. J. Mol. Chem. 236, 3112–3120 (1961).

    Google Scholar 

  • Hanzon, V. & G.toschi. Electron Microscopy on Microsomal Fractions from Rat Brain. Exp. Cell Res. 16, 256–271 (1959).

    Google Scholar 

  • Harris, E. J. The Transfer of Na and K between Muscle and the Surrounding Medium (2). Trans. Faraday Soc. 46, 872–882 (1950).

    Google Scholar 

  • — Linkage of Sodium and Potassium Active Transport in Human Erythrocytes. Symp. Soc. exp. Biol. 8, 228–241 (1954).

    Google Scholar 

  • — Transport and Accumulation in Biological Systems. London: Butterworth (1956).

    Google Scholar 

  • — & G. p.burn. The Transfer of Sodium and Potassium Ions between Muscle and the Surrounding Medium. Trans. Faraday Soc. 45, 508–528 (1949).

    Google Scholar 

  • Heath, H. & R.fiddick, Inhibitory Effect of Diamox and Chloroquine on the NADH2-Monodehydro Ascorbic Acid-transhydrogenase Activity of Retinal and Ciliary Microsomes. Nature (Lond.) 202, 1128–9 (1964).

    Google Scholar 

  • Heinz, E. & R. p.durbin. Studies of the Chloride Transport in the Gastric Mucosa of the Frog. J. gen. Physiol. 41, 101–117 (1957).

    Google Scholar 

  • Hempel, A. C. A. The Relationship of the Major Constituents of Blood Plasma to the Intraocular Pressure During Phasic Variations and Ammonium Chloride Administration. Exp. Eye Res. 3, 85–97 (1964).

    Google Scholar 

  • Henkind, P. Circulation in the Iris and Ciliary Processes. Brit. J. Ophthal. 49, 6–10 (1965).

    Google Scholar 

  • Heppel, L. A. Electrolytes of Muscle and Liver in Potassium-treated Rats. Amer. J. Physiol. 127. 385–392.

  • — Diffusion of Radioactive Sodium into Muscles of Potassium Deprived Rats. Amer. J. Physiol. 128, 449–454 (1940).

    Google Scholar 

  • Hertel, E. Experimentelle Untersuchungen über die Abhängigkeit des Augendrucks von der Blutbeschaffenheit. von Graefes Arch. Ophthal. 88, 197–229 (1914).

    Google Scholar 

  • Hertz, L. & T.clausen. Effects of Potassium and Sodium on Respiration; their Specificity to Slices from Certain Brain Regions. Biochem. j. 89, 526–533 (1963).

    Google Scholar 

  • Hiroishi, H. Über das Verhältnis zwischen Augendruck und Blutdruck in den episkleralen Venen und Wirbelvenen. Von Graefes Arch. Ophthal. 113, 212–221 (1924).

    Google Scholar 

  • Hodgkin, A. L. The Ionic Basis of Electrical Activity in Nerve and Muscle. Biol. Rev. Cambridge phil. Soc. 26, 339–409 (1951).

    Google Scholar 

  • — Ionic Movements and Electrical Activity in Giant Nerve Fibres. Proc. Roy. Soc. (B) 148, 1–37 (1957).

    Google Scholar 

  • — & A. f.huxley. Currents Carried by Sodium and Potassium Ions through the Membrane of the Giant Axon of Loligo. J. Physiol. 116, 449–472 (1952a).

    Google Scholar 

  • — The Components of Membrane Conductance in the Giant Axon of Loligo.J. Physiol. 116, 473–496 (1952b).

    Google Scholar 

  • — A Quantitative Description of Membrane Current and its Application to Conduction and Excitation in Nerve. J. Physiol. 117, 500–544 (1952c).

    Google Scholar 

  • — & B.katz Ionic Currents Underlying Activity in the Giant Axon of the Squid. Arch. sci. Physiol. 3, 129–150 (1949).

    Google Scholar 

  • — & B.katz. The Effect of Sodium Ions on the Electrical Activity of the Giant Axon of the Squid. J. Physiol. 108, 37–77 (1949).

    Google Scholar 

  • — & R. d.keynes. Movements of Cations During Recovery in Nerve. Symp. Soc. exp. Biol. 8, 423–437 (1954).

    Google Scholar 

  • Hogben, C. A. M. Active Transport of Chloride by Isolated Frog Gastric Epithelium. Amer. J. Physiol. 180, 641–649 (1955).

    Google Scholar 

  • Holmberg, A. Ultrastructural Changes in the Ciliary Epithelium Following Inhibition of Secretion of Aqueous Humour in the Rabbit Eye. Stockholm: Axlings Bok- & Tidskriftstryckeri (1957).

    Google Scholar 

  • Huf, E. G., N. s.doss & J. p.wills. Effects of Metabolic Inhibitors and Drugs on Ion Transport and Oxygen Consumption in Isolated Frog Skin. J. gen. Physiol. 41, 397–417 (1957).

    Google Scholar 

  • Huxley, A. F. in: Ion Transport Across Membranes, (ed. Hcans T. Clarke), p.3–34. New Yor: Academic Press. 1954 (1954).

  • Kagawa, C. M., J. a.cella & C. g.vanarman. Action of New Steroids in Blocking Effects of Aldosterone and Desoxycorticosterone on Salt. Science. 126, 1015 (1957).

    Google Scholar 

  • —, F. m.sturtevant & C. g.vanarman. Pharmacology of a New Steroid that Blocks Salt Activity of Aldosterone and Desoxycorticosterone. J. pharmacol. exp. Therap. 126, 123 (1959).

    Google Scholar 

  • Kinoshita, J. H. The Stimulation of the Phosphogluconate Oxidation Pathway by Pyruvate in Bovine Corneal Epithelium. J. biol. Chem. 228, 247–253 (1957).

    Google Scholar 

  • — Some Aspects of the Carbohydrate Metabolism of the Cornea. Invest. Ophthal. 1, 178–186 (1962).

    Google Scholar 

  • Kinsey, V. E. A Unified Concept of Aqueous Humour Dynamics and the Maintenance of Intraocular Pressure. Arch. Ophthal. 44, 215–235 (1957).

    Google Scholar 

  • — Chemical Composition and Osmotic Pressure of the Aqueous Humour and Plasma of the Rabbit. J. gen. Physiol. 34, 389–402 (1951).

    Google Scholar 

  • — Comparative Chemistry of Aqueous Humour in Posterior and Anterior Chambers of Rabbit Eye. A. M. A. Arch. Ophthal. 50, 401–417 (1953).

    Google Scholar 

  • — Ion Movement in the Eye. Circulation. 21, 968–987 (1960).

    Google Scholar 

  • — & E.bárány. The Rate of Flow of Aqueous Humour II. Amer. J. Ophthal. 32, 189–202 (1949).

    Google Scholar 

  • — & W. m.grant. Further Chemical Studies on Blood-Aqueous Humour dynamics. J. gen. Physiol. 26, 119–129 (1942a).

    Google Scholar 

  • — The Mechanism of Aqueous Humour Formation Inferred from Chemical Studies on Blood-Aqueous Humour Dynamics. J. gen. Physiol. 26, 131–149 (1942b).

    Google Scholar 

  • — The Secretion-Diffusion Theory of Intraocular Fluid Dynamics. Brit. J. Ophthal. 28, 355–361 (1944).

    Google Scholar 

  • — & D. g.cogán. Water Movement and the Eye. Arch. Ophthal. 27, 242–252 (1942).

    Google Scholar 

  • —, J. j.livingood & B. r.curtis. Sodium, Chloride and Phosphorus Movement and the Eye. Arch. Ophthal. 27, 1126–1131 (1942).

    Google Scholar 

  • — & E.palm. Posterior and Anterior Chamber Aqueous Humour Formation. A.M.A. Arch. Ophthal. 53, 330–344 (1955).

    Google Scholar 

  • — Penetration of Sodium and Thiocyanate into the Posterior and Anterior Chambers. Brit. J. Ophthal. 42, 620–625 (1958).

    Google Scholar 

  • — & D. V. n.reddy. An Estimate of the Ionic Composition of the Fluids Secreted into the Posterior Chamber from a Study of Aqueous Humour Dynamics. Docum. ophthal. 13, 7–32 (1959).

    Google Scholar 

  • — & M. b.williamson. Investigation of the Blood-Aqueous Barrier in the New-born (II). Amer. J. Ophthal. 32, 509–512 (1949).

    Google Scholar 

  • — Chemistry and Dynamics of Aqueous Humour in: The Rabbit in Eye Research, (ed. J. H. Prince) p. 218–320. (Tables 9.8 and 9.9) C. C. Thomas, Springfield, Ill. (1964).

    Google Scholar 

  • Kleinzeller, CA. & k. Čaper in Cs. fysiol. 7, 490, cited by Čapek in: Membrane Transport and Metabolism, (ed. A. Kleinzeller and A. Kotyk.) p. 305. London: Academic Press. 1961 (1958).

  • Koefoed-Johnsen, V. The Effect of g-Strophanthin (Ouabain) on the Active Transport of Sodium through the Isolated Frog Skin. Acta physiol. scand. 42, Suppl. 145, 87–88 (1957).

    Google Scholar 

  • Kornbluth, W. & E.limnér. Experimental Tonography in Rabbits; Effect of Unilateral Ligation of Common Carotid Artery on Aqueous Humour Dynamics as Studied by Means of Tonography and Fluorescein Appearance Time. A.M.A. Arch. Ophthal. 54, 717–724 (1955).

    Google Scholar 

  • Krogh, A. The Active and Passive Exchanges of Inorganic Ions Through the Surfaces of Living Cells and Through Living Membranes Generally. Proc. Roy. Soc. (B) 133, 140–200. (Croonian Lecture.) (1946).

    Google Scholar 

  • Kun, E. & L. o.abood. Colorimetric Estimation of Succinic Dehydrogenase by tri-phenyltetrazolinchloride. Science. 109, 144–146 (1949).

    Google Scholar 

  • Langham, M. E. Aqueous Humour and Control of Intra-ocular Pressure. Physiol. Rev. 38, 215–242 (1958).

    Google Scholar 

  • — & J. e.eisenlohr. A Manometric Study of the Rate of Fall of the Intraocular Pressure in the Living and Dead Eyes of Human Subjects. Invest. Ophthal. 2, 72–82 (1963).

    Google Scholar 

  • — & A. e.maumence. The Diagnosis and Treatment of G'aucoma Based on a New Procedure for the Measurement of Intraocular Dynamics. Trans. Amer. Acad. Ophthal. & Otol. 68, 277–298 (1964).

    Google Scholar 

  • Lauber, H. Die Mikroskopische Anatomie des Ciliärkörpers der Aderhaut und des Glaskörpers. Graefe-Saemisch Handbuch der Augenheilkunde 2. Aufl. Bd. I, 2. Abt. Kap. III, 2. 1–161. Berlin: J. Springer, 1931 (1930).

    Google Scholar 

  • Leaf, CA. Proceedings of the Third International Congress of Biochemistry, Brussels 1955 (Communications) (ed. C. Liebecq.) p. 107. New York: Academic Press. 1956 (1955).

  • —, J.anderson & L. b.page. Active Sodium Transport by the Isolated Toad Bladder. J. gen. Physiol. 41, 657–668 (1958).

    Google Scholar 

  • — Respiration and Active Sodium Transport of Isolated Toad Bladder. J. biol. Chem. 234, 1625–1629 (1959).

    Google Scholar 

  • — Some Actions of Neurohypophyseal Hormones on a Living Membrane. J. gen. Physiol. 43, 175–189 (1960).

    Google Scholar 

  • — & A.renshaw. A Test of the ‘Redox’ Hypothesis of Active Ion Transport. Nature. (Lond.) 178, 156–157 (1956).

    Google Scholar 

  • — The Anaerobic Active Ion Transport by Isolated Frog Skin. Biochem. j. 65, 90–93 (1957).

    Google Scholar 

  • Leber, T. Die Cirkulations- und Ernährungsverhältnisse des Auges. Graefe-Saemisch Handbuch. ges. Augenheilk. 2. Aufl. 2. II. 232ff. (1903).

  • Lehmann, O. & A.meesmann. Über das Bestehen eines Donnangleichgewichtes zwischen Blut und Kammerwasser bzw. Liquor cerebrospinalis. Arch. ges. Physiol. 205, 210–232 (1924).

    Google Scholar 

  • Leplat, G. La pression artérielle dans les vaisseaux de l'iris et ses modifications sous l'influence des collyres. Ann. Oculist. 157, 693–701 (1920).

    Google Scholar 

  • Levene, R. Z. Studies on Ocular Blood Flow in the Rabbit. A.M.A. Arch. Ophthal. 58, 19–22 (1957).

    Google Scholar 

  • — Dialysis of the Aqueous Against Plasma. A.M.A. Arch. Ophthal. 59, 703–5 (1958a).

    Google Scholar 

  • — Osmolarity in the Normal State and Following Acetazolamide. A.M.A. Arch. Ophthal. 59, 597–602 (1958b).

    Google Scholar 

  • Levi, H. & H. h.ussing. The Exchange of Sodium and Chloride Ions Across the Fibre Membrane of the Isolated Frog Sartorius. Acta physiol. scand. 16, 232–249 (1948).

    Google Scholar 

  • Levinsky, N. G. & W. h.sawyer. Relation of Metabolism of Frog Skin to Cellular Integrity and Electrolyte Transfer. J. gen. Physiol. 36, 607–615 (1953).

    Google Scholar 

  • Liddle, G. W. Sodium Diuresis Induced by Steroidal Antagonists of Aldosterone. Science. 126, 1016 (1957).

    Google Scholar 

  • — Aldosterone Antagonists. Arch. int. Med., 102, 998–1004 (1958).

    Google Scholar 

  • Linderholm, H. Active Transport of Ions Through Frog Skin with Special Reference to the Action of Certain Diuretics; a Study of Flux of Labelled Ions and Respiration. Acta physiol. scand. 27, Supp. 97 (1952).

  • — On the Behaviour of the ‘Sodium Pump’ in Frog Skin at Various Concentrations of Na Ions in the Solution on the Epithelial Side. Acta physiol. scand. 31, 36–61 (1954).

    Google Scholar 

  • Linnér, E. A Method for Determining the Rate of Plasma Flow Through the Secretory Part of the Ciliary Body. Acta physiol. scand. 22, 83–86 (1951).

    Google Scholar 

  • — Ascorbic Acid as a Test Substance for Measuring Relative Changes in the Rate of Plasma Flow Through the Ciliary Processes. II. Acta physiol. scand. 26, 70–78 (1952).

    Google Scholar 

  • — The Rate of Aqueous Flow and the Adrenals. Trans. ophthal. Sac., U.k. 79, 27–32 (1959a).

    Google Scholar 

  • — Adrenocortical Steroids and Aqueous Humour Dynamies. Docum. ophthal. 13, 210–222 (1959b).

    Google Scholar 

  • — & P. j.wistrand. Adrenal Cortex and Aqueous Humour Dynamics. Exp. Eye Res. 2, 148–159 (1963).

    Google Scholar 

  • Maffly, R. H., R. m.hays, E.landin & A.leaf. The effect of Neurophypothyseal Hormones on the Permeability of the Toad Bladder to Urea. J. clin. Invest. 39, 631–641 (1961).

    Google Scholar 

  • Magitot, A. & P. bailliart, P. La pression comparée dans les vaisseaux de l'iris et de la rétine. Ann. Oculist. 158, 81–95 (1921).

    Google Scholar 

  • Maizels, M. Active Cation Transport Erythrocytes. Symp. Soc. exp. Biol. 8, 202–227 (1954).

    Google Scholar 

  • Mandel, P. & J.klethi. La présence d'un système oxydatif direct du glucose-6-phosphate dans le cristallin. C. R. Acad. Sci. 241, 710–712 (1955).

    Google Scholar 

  • — Pathways of Adenosinetriphosphatase Production by Calf Lens Homogenate. Nature (Lond.) 195, 306–307 (1962).

    Google Scholar 

  • Manery, J. F. Water and Electrolyte Metabolism. Physiol. Rev. 34, 334–417 (1954).

    Google Scholar 

  • Maurice, D. M. The Permeability to Sodium Ions of the Living Rabbit's Cornea. J. Physiol. 112, 367–391 (1951).

    Google Scholar 

  • — The Exchange of Sodium Between the Vitreous Body and the Blood and Aqueous Humour. J. Physiol. 137, 110–125 (1957).

    Google Scholar 

  • — Protein Dynamics in the Eye Studied with Labelled Proteins. Amer. J. Ophthal. 47, 361–367 (1959).

    Google Scholar 

  • — A New Objective Fluorophotometer. Exp. Eye Res. 2, 33–38 (1963).

    Google Scholar 

  • Mauro, A. & A.finkelstein. Realistic Model of a Fixed Charge Membrane According to the Theory of Teorell, Mayer & Sievers. J. gen. Physiol. 42, 385–391 (1958).

    Google Scholar 

  • Meesman, A. Blutgasanalysen am Kaninchenauge. Ber. dtsch. ophthal. Ges. 48, 99–106 (1930).

    Google Scholar 

  • Miller, J. E. Inter-relations of the Blood Aqueous Potential and Acetazolamide in the Rabbit. Invest. Ophthal. 1, 363–367 (1962).

    Google Scholar 

  • — & M. a.constant. The Measurement of Rabbit Ciliary Epithelial Potentials in Vitro. Amer. J. Ophthal. 50, 855–861 (1960).

    Google Scholar 

  • Mishra, R. K., L. p.agarwal, M.rao & M.mohan. Effect of Metabolic Inhibitors upon Aqueous Humour Formation in Rabbits. Orient. A. Ophthal. 1, 181–187 (1963).

    Google Scholar 

  • Missotten, L. L'ultrastructure des tissues oculaires. Bull. Soc. belge Ophtal. 136, fasc. 1 (1964).

  • Neihof, R. & K.sollner. A Quantitative Theory of the Electrolyte Permeability of Mosaic Membranes Composed of Selectively Anion-permeable and Selectively Cation-permeable Parts, and its Experimental Verification (II). J. gen. Physiol. 38, 613–622 (1955).

    Google Scholar 

  • Nicati, W. La glande de l'humeur aque, glande des procès ciliaries on glande de l'uvée. Arch. Ophthal. 10, 481–508 (1890).

    Google Scholar 

  • Niesel, P. Messungen von experimentell erzeugten Änderungen der Aderhautdurch-blutung bei Kaninchen. Basel: Verlag S. Karger (1962).

    Google Scholar 

  • Noell, W. K. Studies on the Electrophysiology and the Metabolism of the Retina. U.S.A.F. School of Aviation Medicine, Project No. 21-1201-0004. Report No. 1. (1953).

  • — The Origin of the Electroretinogram. Amer. J. Ophthal. 38, 78–90 (1954).

    Google Scholar 

  • — Differentiation, Metabolic Organization and Visability of the Visual Cell. A.M.A. Arch. Ophthal. 60, 702–733 (1958).

    Google Scholar 

  • — The Visual Cell: Electric and Metabolic Manifestations of its Life Processes. Amer. J. Ophthal. 48, 347–370 (1959).

    Google Scholar 

  • — Cellular Physiology of the Retina. J. opt. Soc. America. 53, 36–48 (1963).

    Google Scholar 

  • Novikoff, A. B. Approaches to the In Vivo Function of Subcellular Particles in: Subcellular Particles, ed. T. Hayashi. New York: Ronald Press Company, (1959). (1958).

    Google Scholar 

  • Palade, G. E. The Endoplasmic Reticulum. J. Biochem. Biophys. Cytol. 2, 85–97 (1956).

    Google Scholar 

  • Pappenheimer, J. R. Passage of Molecules Through Capillary Walls. Physiol. Rev. 33, 387–423 (1953).

    Google Scholar 

  • —, E. m.renkin & L. m.borrero. Filtration, Diffusion and Molecular Sieving Through Peripheral Capillary Membranes. Amer. J. Physiol. 167, 13–46 (1951).

    Google Scholar 

  • Peters, L., K. j.fenton, M. l.wolf & A.kander. Inhibition of the Renal Tubular Excretion of N1-methyl-nicotinamide by Small Doses of a Basic Cyanine Dye. J. Pharm. exp. Therap. 113, 148–159 (1955).

    Google Scholar 

  • Peters, R. A., R. w.wakelin & P.buffa. Biochemistry of Fluoracetate Poisoning; Isolation and Some Properties of Fluorotricarboxylic Acid Inhibitor of Citrate Metabolism (and Note upon Infra-red Spectra by L. C. Thomas) Proc. Roy. Soc. b. 194, 497 (1953).

    Google Scholar 

  • Pickworth, F. A. A New Method for the Study of Brain Capillaries and its Application to the Regional Localisation of Mental Disorder. J. Anat. 59, 62–71.

  • Pilkerton, R., P. h.bulle & J. o.rourke. Uveal Tissue Respiration and Glycolysis in Living Experimental Animals. Invest. Ophthal. 3, 237–240 (1964).

    Google Scholar 

  • Popper, K. R. The Logic of Scientific Discovery. London: Hutchinson (1959).

    Google Scholar 

  • Porter, K. R. The Submicroscopic Morphology of Protoplasm. Harvey Lect. 1955–1956. 175–228 (1956).

    Google Scholar 

  • Post, R. L. & c. d. albright in: Membrane Transport and Metabolism (ed. A. Kleinzeller & A. Kotyk), p. 219. London: Academic Press. 1961 (1960).

  • Potts, A. M. Uveal Pigment and Phenothiazine Compounds. Trans. Amer. ophthal. Soc. 60, 517–552 (1962).

    Google Scholar 

  • Prince, J. H. - (Editor) The Rabbit in Eye Research. Springfield, Ill. C. C. Thomas. 1964. (1964)

    Google Scholar 

  • Quastel, J. H. in: Methods in Enzymology, (ed. S. P. Colowick & N. O. Kaplan) Vol. 4. p. 331. New York: Academic Press (1957).

  • — & A. h. m.wheatley. CXXVI. Anaerobic Oxidations. A Ferricyanide as a Reagent for the Manometric Investigation of Dehydrogenase Systems. Biochem. j. 32, 936–942 (1938).

    Google Scholar 

  • Riley, M. V. The Sodium-Potassium-stimulated Adenosinetriphosphatase of Rabbit Ciliary Epithelium. Exp. Eye Res. 3, 76–84 (1964a).

    Google Scholar 

  • — Inhibition by Ouabain of Glycolysis in Ciliary Body. Nature (Lond.) 204, 380 (1964b).

    Google Scholar 

  • — Metabolism of Ciliary Body in Relation to Aqueous Humour Formation. 1st. Int. Symposium on Biochem. of the Retina. Ed. C. Graymore. London: Academic Press 1964 (1964c).

    Google Scholar 

  • Riley, M. V. The Tricarboxylic Acid Cycle and Glycolysis in Relation to Ion Transport by the Ciliary Body. Biochem. j. (in press) (1966).

  • — & V.baroncelli. Metabolism of Ciliary Body in Relation to Formation of Aqueous Humour. Nature. (Lond.) 201, 621 (1964).

    Google Scholar 

  • Rodenhäuser, J. H. Uveadurchblutung und Augeninnendruck. Klin. Mbl. Augenheilk. Beiheft 42. (1963) (1963).

  • Ruskell, G. L. Blood Vessels of the Orbit and Globe in: The Rabbit in Eye Research, (ed. J. H. Prince), p. 514–553. C. C. Thomas, Springfield, Ill. 1964 (1964).

    Google Scholar 

  • Sallmann, vonL. Discussion on Friedenwald, Buschke and Michel. (1943). Arch. Ophthal. 29, 570–572 (1943).

    Google Scholar 

  • Samojloff, A. Zur Blutdruckmessung in den Augengefässen mittels der Pelotten-methode. Von Graefes Arch. Ophthal. 119, 235–254 (1927).

    Google Scholar 

  • Schoffeniels, E. Action of 2: 4-dinitrophenol on Sodium Flux Across the Frog's Skin. Arch. int. Physiol. 63, 361–365 (1955).

    Google Scholar 

  • Schwartz, A., H. s.batcheland & H.mcilwain. The Sodium-stimulated Adenosine-triphosphatase Activity and Other Properties of Cerebral Microsomal Fractions and Subfractions. Biochem. j. 84, 626–637 (1962).

    Google Scholar 

  • Scullica, L. Studi sull'angiotettonica della ‘tunica vasculosa bulbi’. (Ricerche in Lepus Cuniculus). Biologica latina, 10. Suppl. 6 (1957).

  • — Modificazioni morfologiche della rete vascolare dei processi ciliari e dell'oribcolo ciliare consecutive al trattamento con farmaci vasocostrittori e vasodilatatori. G. Hal. Oftal. 11, 252–275 (1958).

    Google Scholar 

  • — Observations of Uveal Blood Flow Pattern in Excised Arterially Perfused Rabbit Eyes. Amer. J. Ophthal. 54, 1057–1064 (1962).

    Google Scholar 

  • Seidel, E. Weitere experimentelle Untersuchungen über die Quelle und den Ver'auf der intraokularen Saftströmung, von Graefes Arch. Ophthal. 112, 252–259 (1923).

    Google Scholar 

  • — Zur Blutzirkulation im Ziliargefässsystem. Ber. dtsch. ophthal. Ges. 44, 79–86. (1924).

    Google Scholar 

  • Serr, H. Über den Blutdruck in den intraokularen Gefässen. Ber. dtsch. ophthal. Ges. 46, 21–29 (1927).

    Google Scholar 

  • Shanes, A. M. In: Electrolytes in Biological Systems, (ed. H. T. Clarke), p. 157–175. Amer. physiol. Soc. Washington, D.C. (1955).

  • Sharma, S. K., R. m.johnstone & J. h.quastel. Corticosteroids and Ascorbic Acid Transport in Adrenal Cortex in Vitro. Biochem. j. 92, 564–573 (1964).

    Google Scholar 

  • Sharpe, G. w. G. & A.leaf. Biological Action of Aldosterone in Vitro. Nature (Lond.) 202, 1085–1088 (1964).

    Google Scholar 

  • Sheppard, L. B. The Anatomy and Histology of the Normal Rabbit Eye with Special Reference to the Ciliary Zone. A.M.A. Arch. Ophthal. 66, 896–906.

  • — The Anatomy and Histology of the Normal Rabbit Eye with Special Reference to the Ciliary Zone. A.M.A. Arch. Ophthal. 67, 87–100 (1962a).

    Google Scholar 

  • — The Anatomy and Histology of the Normal Rabbit Eye with Special Reference to the Ciliary Zone. A.M.A. Arch. Ophthal. 67, 254–261 (1962b).

    Google Scholar 

  • Simon, K. A. & S. l.bonting. Possible Usefulness of Cardiac Glycosides in the Treatment of Glaucoma. A.M.A. Arch. Ophthal. 68, 227–234 (1962).

    Google Scholar 

  • — & N. m.hawkins. Studies on Sodium-potassium-activated Adenosinetriphosphatase. II. Exp. Eye Res. 1, 253–261 (1962).

    Google Scholar 

  • Skou, J. C. The Influence of some Cations on an Adenosinetriphosphatase from Peripheral Nerves. Biochim. biophys. Acta. 23, 394–401 (1957).

    Google Scholar 

  • — Further Investigation on a Mg+ + Na+-activated Adenosinetriphosphatase, Possibly Relat the Active linked Transport of Na+ and K+ Across the Nerve Membrane. Biochim. biophys. Acta. 42, 6–23 (1960a).

    Google Scholar 

  • — In: Membrane Transport & Metabolism, (Prague 1960) ed. A. Kleinzeller & A. Kotyk. London & New York: Academic Press. Prague: Publishing House of the Czechoslovak Academy of Sciences, 1961 (1960b).

  • Sollner, K. Bi-ionic Potentials Across Porous Membranes of High Ionic Selectivity. J. Phys. coll. Chem. 53, 1211–1226 (1949a).

    Google Scholar 

  • ut supra. J. Phys. coll. Chem. 53, 1226–1239 (1949b).

    Google Scholar 

  • Solomon, A. K. in: lèr Colloque de Biologie de Saclay: The Method of Isotopic Tracers Applied to the Study of Active Ion Trasnport. (ed. J. Coursaget), p. 106–124. London: Pergamon Press (1959a).

  • — in: lér Colloque de Biologie de Saclay: The Method of Isotopic Tracers applied to the Study of Active Ion Transport. (ed. J. Coursaget), p. 139–154. London: Pergamon Press (1959b).

  • —, Gill, T. J. III & J. l.gold. The Kinetics of Cardiac Glycoside Inhibition of Potassium Transport in Human Erythrocytes. J. gen. Physiol. 40, 327–350 (1956).

    Google Scholar 

  • Sondermann, R. Experimentelle Untersuchungen über die Durchblutungsgrösse des Auges bei normalem und anormalem Drucke. Arch. Augenheilk. 105, 698–703 (1932).

    Google Scholar 

  • Steinbach, H. B. On the Sodium and Potassium Balance of Isolated Frog Muscles. Proc. not. Acad. Sci. (Wash) 38, 451–455 (1952).

    Google Scholar 

  • — The Regulation of Sodium and Potassium in Muscle Fibres. Symp. Soc. exp. Biol. 8, 432–452 (1954).

    Google Scholar 

  • Steindorf, K. in: Tabulae Biologicae Vol. XXII (oculus) pars la (Ed. K. Steindorf, F. P. Fischer, J. S. Friedenwald, A. Sorsby), p. 222. W. Junk: Amsterdam. (1947).

  • Stephenson, M. L., L. i.hecht, J. w.littlefield, R. b.loftfield & P. c.zamecnik. Intermediate Reactions in Protein Synthesis, in: Subcellular Particles, (ed. T. Hayashi), p. 160–171. New York: Ronald Press Company. 1959.

    Google Scholar 

  • Swanson, P. D., Bradford, H. F. & Mcilwain, H. Stimulation and Solubilization of the Sodium Ion Activated Adenosinetriphosphatase of Cerebral Microsomes by surface Active Agents Especially Polyoxy-ethylene Ethers: Actions of Phospholi-pases and a Neuraminidase. Biochem. j. 92, 235–247 (1964).

    Google Scholar 

  • Teorell, T. Transport Processes and Electrical Phenomena in Ionic Membranes. Progress in Biophysics, 3. London: Pergamon Press. 1953 (1953).

    Google Scholar 

  • — Electrokinetic Membrane Processes in Relation to Properties of Excitable Tissues. (I and II). J. gen. Physiol. 42, 831–845. (Part I) - 847–863. (Part II) (1959).

    Google Scholar 

  • Tormey, J. MCD. Fine Structure of the Ciliary Epithelium of the Rabbit with Particular Reference to ‘Infolded Membranes’, ‘Vesicles’ and the Effects of Diamox. J. cell. Biol. 17, 641–659 (1963).

    Google Scholar 

  • — The Effect of Glutaraldehyde Fixation on the Fine Structure of the Gĺiary Epithelium. Invest. Ophthal. 3, 475 (1964).

    Google Scholar 

  • ussing, H. H. Active Ion Transport Through the Isolated Frog Skin in the Light of Tracer Studies. Acta physiol. scand. 17, 1–37 (1949).

    Google Scholar 

  • Ussing, H. H. The Relation Between Active Ion Transport and Bioelectric Phenomena. Rio de Janeiro: Publicacoes do Instituto da Biofisica (1955).

  • — in: Metabolic Aspects of Transport Across Membranes, (ed. Q. R. Murphy). Madison, Wn.: University of Wisconsin Press. 1957 (1957).

  • — In: ler Colloque de Biologie de Saclay, (ed. J. Coursaget) p. 139–154. London: Pergamon Press. 1959 (1958).

  • — in: Handbuch der Experimentellen Pharmakologie. Bd. 13, p. 1–195. (ed. O. Eichler, A. Farah). Berlin: J. Springer. 1960 (1960).

  • — & E. e.windhanger. Nature of Shunt Path and Active Sodium Transport Through Frog Skin Epithelium. Acta physiol. scand. 61, 484–504 (1964).

    Google Scholar 

  • — & Zerahn, K. Active Transport of Sodium as the Source of Electric Current in the Short Circuited Isolated Frog Skin. Acta physiol. scand. 23, 110–127 (1951).

    Google Scholar 

  • Vander, A. J., W. s.wilde & R. l.malvin. Stop-flow Analysis of Aldosterone and Steroidal Antagonist SC-8109 on Renal Tubular Sodium Transport Kinetics. Proc. Soc. exp. Biol. Med. 103, 525–527 (1960).

    Google Scholar 

  • Vates, T. S., S. l.bonting & W. w.oppelt. Na-K Activated Adenosinetriphosphatase and Formation of Cerebrospinal Fluid in the Cat. Amer. J. Physiol. 206, 1165–1172 (1964).

    Google Scholar 

  • Versari, R. Le fasi di sviluppa e di regresso de la tunica vasculosa lentis e la morphogenesi dei vasi sanguiferi nei processi ciliare e nell'iride dell'occhio dell'uomo, Ric. morf. 3, p. 3 (1923).

    Google Scholar 

  • Vitello, E. Sulla forma e sulla grandezza dei processi ciliari e loro rapporto con la grandezza della camera anteroire e della camera posteriore dell'occhio di alcuni vertebrati. Boll. Soc. ital. Biol. sperim. 6, 514–519 (1931).

    Google Scholar 

  • Wachstein, M. & E.meisel. Histochemistry of Hepatic Phosphatases of a Physiological pH; with Special Reference to the Demonstration of Bile Canaliculi. Amer. J. clin. Path. 27, 13–23 (1957).

    Google Scholar 

  • Weiss, O. Der Flüssigkeitswechsel des Auges. Pflügers Anh. ges. Physiol. 119, 462–475 (1923).

    Google Scholar 

  • Whittam, R. Transport and diffusion in Red Blood Cells. London: Arnold (1964).

    Google Scholar 

  • — & D. m.blond. Respiratory Control by an Adenosine-triphosphatase Involved in Active Transport in Brain Cortex. Biochem. j. 92, 147–158 (1964).

    Google Scholar 

  • Whittembury, A., N.sugino & A. k.solomon. Ionic Permeability and Electrical Potential Differences in Necturus Kidney Cells. J. gen. Physiol. 44, 689–712 (1961).

    Google Scholar 

  • Wilde, W. S., R. o.scholz & D. b.cowie. Studies on the Physiology of the Eye Using Tracer Substances, II. The Turnover Rate of Sodium in the Aqueous Humour of the Guinea Pig: Methods of Analysis. Amer. J. Ophthal. 30, 1516–1525 (1947).

    Google Scholar 

  • Wistrand, P. J. Intraocular Pressure and Resistance to Aqueous Outflow. Exp. Eye Res. 3, 141–155 (1964).

    Google Scholar 

  • Zerahn, K. Oxygen Consumption and Active Sodium Transport in the Isolated and Short-circuited Frog Skin. Acta physiol. scand. 36, 300–318 (1956).

    Google Scholar 

  • Zwiauer, A. & E.bornschein. Beitrag zu Frage pharmakol. Beeinflussbarkeit der Choroidealgefässe. v. Graefes Arch. Ophthal. 149, 407–412 (1949).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Department of Physiology - Institute of Ophthalmology - Judd Street - W. C.1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, D.F. Aqueous humour formation. Doc Ophthalmol 21, 116–238 (1966). https://doi.org/10.1007/BF00184135

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00184135

Keywords

Navigation