Skip to main content
Log in

An experimental investigation of some models of polymer fracture

  • Published:
International Journal of Fracture Mechanics Aims and scope Submit manuscript

Abstract

It has recently been shown that the techniques of EPR spectroscopy can be used to monitor atomic bond rupture during fracture of polymeric materials and thus provide important new insights of the molecular mechanisms of fracture in these materials. In particular, this method can be used as a fundamental check of the several atomistically-derived theories of polymer fracture. In this paper such a check is made of two representative such theories, those of S. N. Zhurkov and W. G. Knauss. It is shown that these theories do not provide physically realistic models of the fracture mechanisms in oriented polymeric fibers and it is suggested that their lack of relevance is due to the unique morphological structure of highly oriented polymers.

Résumé

On a montré récemment que les techniques de spectroscopie électronique a résonnance paramagnétique peuvent être utilisées avec succès pour la detection des ruptures des liaisons atomiques au cours de la rupture des matériaux polymeres; ces techniques ont permis de jeter de nouvelles lumières sur les mécanismes moléculaires qui interviennent au cours de la rupture de ces matériaux.

En particulier, la méthode permet de procéder a un controle, sur une base fondamentale, de quelques théories atomiques de la rupture des polymères.

Dans le présent mémoire, on procède à un tel controle de deux théeories des plus typiques, celles de Zhurkov et de Knauss.

On démontre que ces theories ne conduisent pas à des modèles physiquement représentatif du mécanisme de rupture des polymères à fibres orientées. On suggère que cette inadaptation résulte de la structure morphologique particulière des polymères à orientation marquée.

Zusammenfassung

Neuerdings wurde gezeigt, daß die Verfahren der elektronischen Spektroskopie erfolgreich für den Nachweis von Zerstörungen in den atomaren Bindungen während des Zerreissens von Polymeren herangezogen werden können. Sie führen somit zu wichtigen neuen Erkenntnissen über die molekularen Mechanismen der Zerstörung dieser Werkstoffe.

Im besonderen kann dieses Verfahren für eine grundlegende Kontrolle verschiedener atomistisch abgeleiter Theorien über den Bruch von Polymeren herangezogen werden. Im vorliegenden Bericht werden zwei dieser Theorien, nämlich diejenigen von S. N. Zhurkov and W. G. Krauss, überprüft.

Es wird gezeigt, daß these Theorien kein physikalisch realistisches Modell des Bruchmechanismus von Polymerfasern geben, and es wird vorgeschlagen diesen Mangel an Zutrefflichkeit durch die spezielle morphologische Struktur der streng gerichteten Fasern zu erklären.Major portions of this work were supported by the National Science Foundation and the National Aeonautics and Space Administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Zhurkov, A. Y. Savostin and E. E. Tomashevskii, Electron Paramagnetic Resonance Study of the Polymer Degradation Mechanism. Soviet Physics-Doklady., 9 (1965) 986 (in English).

    Google Scholar 

  2. M. L. Williams and K. L. DeVries, An EPR Investigation of Newly Formed Fracture Surfaces. Proceedings of the 15th Sagamore Army Materials Research Conference, Raquette Lake, New York, August 22–25 (1967).

  3. D. K. Roylance, K. L. DeVries and M. L. Williams, Fracture Detection in Polymers by Electron Paramagnetic Resonance, Fracture, Chapman and Hall, (1969).

  4. G. S. P. Venna and A. Peterlin, EPR Studies of Free Radicals in Mechanically Loaded Nylon 66, Polymer Preprints, 10 (1969) 1051.

    Google Scholar 

  5. S. N. Zhurkov, Das Problem der Festigkeit fester Körper, Zeitschrift fur Physikalische Chemie, 231 (1960) 183.

    Google Scholar 

  6. S. N. Zhurkov, Kinetic Concept of the Strength of Solids, International Journal of Fracture Mechanics, 1 (1965) 311.

    Google Scholar 

  7. S. N. Zhurkov and E. E. Tomaskevskii, An Investigation of Fracture Processes of Polymers by Electron Spin Resonance Method, Conference Proceedings: Physical Basis of Yield and Fracture, Oxford (1966).

  8. A. Tobdsky and H. OEyring, Mechanical Properties of Polymeric Materials, Journal of Chemical Physics, 11 (1943) 125.

    Google Scholar 

  9. D. C.Prevorsek, Tensile Strength of Oriented Polymers Below the Glass Transition Temperature, Journal of Polymer Science, Part A-2, 4 (1966) 63.

    Google Scholar 

  10. C. C. Hsaio, Fracture, Physics Today, 49 (March 1966).

  11. W. G. Knauss, Rupture Phenomena in Viscoelastic Materials, Ph. D. dissertation, California Institute of Technology, Pasadena, Calif. (1963).

    Google Scholar 

  12. A. Peterlin, Mechanical Properties and Chain Folding in Fibers, Preprint no. 193, Camille Dreyfus Laboratory, Research Triangle Institute, North Carolina., March 1968.

    Google Scholar 

  13. K. L. DeVries and R. J. Farris, Strain Inhomogeneities, Molecular Chain Scission and Stress-Deformation in Polymers, UTEC DO 69-027. To be published in the International Journal of Fracture Mechanics.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devries, K.L., Roylance, D.K. & Williams, M.L. An experimental investigation of some models of polymer fracture. Int J Fract 7, 197–202 (1971). https://doi.org/10.1007/BF00183806

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00183806

Keywords

Navigation