Skip to main content
Log in

A Euclidean interpretation of Dynkin diagrams and its relation to root systems

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

A simple metric property satisfied by bases of (finite, not necessarily reduced) root systems is used to define sets in Euclidean space that provide models for Dynkin diagrams and their positive semidefinite one-vertex extensions. The theory of root systems can be founded on the study of these ‘Dynkin sets’, and conversely the Dynkin sets representing connected diagrams can be characterized as the bases and extended bases of root systems. (By an ‘extended base’, we mean a base together with the lowest root of a given length.) In this correspondence the role of nonreduced root systems is natural and important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berman, S., Moody, R. V., and Wonenburger, M. J., ‘Cartan Matrices with Null Roots and Finite Cartan Matrices’, Indiana Univ. Math. J. 21 (1972), 1091–1099.

    Google Scholar 

  2. Browder, F. E. (ed.), Mathematical Developments Arising from Hilbert Problems, Proc. Sym. Pure Math., Vol. 28, Amer. Math. Soc., Providence, R. I., 1976.

    Google Scholar 

  3. Coxeter, H. S. M., ‘Discrete Groups Generated by Reflections’, Ann. Math. (2), 35 (1934), 588–621.

    Google Scholar 

  4. Drucker, D. and Goldschmidt, D. M., ‘Graphical Evaluation of Sparse Determinants’, Proc. Amer. Math. Soc. 77 (1979), 35–39.

    Google Scholar 

  5. Hazewinkel, M., Hesselink, W., Siersma, D., and Veldkamp, F. D., ‘The Ubiquity of Coxeter-Dynkin Diagrams’, Nieuw Archief Wiskunde (3), 25 (1977), 257–307.

    Google Scholar 

  6. Humphreys, J. E., Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1972.

    Google Scholar 

  7. —, Linear Algebraic Groups, Springer-Verlag, New York, 1975.

    Google Scholar 

  8. Kac, V. G., ‘Simple Irreducible Graded Lie Algebras of Finite Growth’, Math. USSR-Izv. 2 (1968), 1271–1311 (English translation).

    Google Scholar 

  9. —, Infinite Dimensional Lie Algebras, Birkhäuser, Boston, 1983.

    Google Scholar 

  10. Loos, O., Symmetric Spaces, Vol. II, Benjamin, New York, 1969.

    Google Scholar 

  11. Looijenga, E., ‘Invariant Theory for Generalized Root Systems’, Invent. Math. 61 (1980), 1–32.

    Google Scholar 

  12. Moody, R. V., ‘A New Class of Lie Algebras’, J. Algebra 10 (1968), 211–230.

    Google Scholar 

  13. —, ‘Root Systems of Hyperbolic Type’, Adv. Math. 33 (1979), 144–160.

    Google Scholar 

  14. Moody, R. V. and Yokonuma, T., ‘Root Systems and Cartan Matrices’, Can. J. Math. 34 (1982), 63–79.

    Google Scholar 

  15. Satake, I., Classification Theory of Semi-simple Algebraic Groups, Marcel Dekker, New York, 1971.

    Google Scholar 

  16. Serre, J.-P., Algebras de Lie Semi-Simples Complexes, Benjamin, New York, 1966.

    Google Scholar 

  17. Wolf, J. A., Spaces of Constant Curvature (4th edn), Publish or Perish, Berkeley, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drucker, D., Frohardt, D. A Euclidean interpretation of Dynkin diagrams and its relation to root systems. Geom Dedicata 22, 77–85 (1987). https://doi.org/10.1007/BF00183054

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00183054

Keywords

Navigation