Skip to main content
Log in

On Blaschke–Santaló diagrams for the torsional rigidity and the first Dirichlet eigenvalue

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

We study Blaschke–Santaló diagrams associated with the torsional rigidity and the first eigenvalue of the Laplacian with Dirichlet boundary conditions. We work under convexity and volume constraints, in both strong (volume exactly one) and weak (volume at most one) form. We discuss some topological (closedness, simply connectedness) and geometric (shape of the boundaries, slopes near the point corresponding to the ball) properties of these diagrams, also providing a list of conjectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Antunes, P., Bogosel, B.: Parametric shape optimization using the support function. preprint (2018). arXiv:1809.00254

  2. Antunes, P., Henrot, A.: On the range of the first two Dirichlet and Neumann eigenvalues of the Laplacian. Proc. R. Soc. Lond. Ser. A 467, 1577–1603 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Bianchini, C., Henrot, A., Takahashi, T.: Elastic energy of a convex body. Math. Nachr. 289(5–6), 546–574 (2016)

    Article  MathSciNet  Google Scholar 

  4. Blaschke, W.: Eine Frage über Konvexe Körper. Jahresber. Deutsch. Math.-Ver. 25, 121–125 (1916)

    MATH  Google Scholar 

  5. Bogosel, B., Henrot, A., Lucardesi, I.: Minimization of the eigenvalues of the Dirichlet–Laplacian with a diameter constraint. SIAM J. Math. Anal. 50, 5337–5361 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bouchitté, G., Fragalà, I., Lucardesi, I.: Shape derivatives for minima of integral functionals. Math. Program. Ser. B 148, 111–142 (2014)

    Article  MathSciNet  Google Scholar 

  7. Bouchitté, G., Fragalà, I., Lucardesi, I.: A variational method for second order shape derivatives. SIAM J. Control Optim. 54(2), 1056–1084 (2016)

    Article  MathSciNet  Google Scholar 

  8. Brasco, L., Nitsch, C., Pratelli, A.: On the boundary of the attainable set of the Dirichlet spectrum. Z. Angew. Math. Phys. 64, 591–597 (2013)

    Article  MathSciNet  Google Scholar 

  9. Brock, F.: Continuous Steiner symmetrization. Math. Nachr. 172, 25–48 (1995)

    Article  MathSciNet  Google Scholar 

  10. Brock, F., Henrot, A.: A Symmetry Result for an Overdetermined Elliptic Problem Using Continuous Rearrangement and Domain Derivative, Rend. Circ. Mat. Palermo, Serie II. Tomo LI, pp. 375–390 (2002)

  11. Bucur, D., Buttazzo, G.: Variational methods in shape optimization problems. In: Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser Verlag, Boston (2005)

  12. Bucur, D., Buttazzo, G., Figuereido, I.: On the attainable eigenvalues of the Laplace operator. SIAM J. Math. Anal. 30, 527–536 (1999)

    Article  MathSciNet  Google Scholar 

  13. Buttazzo, G., Pratelli, A.: An application of the continuous Steiner symmetrization to Blaschke–Santaló diagrams. to appear on ESAIM: COCV

  14. Ftouhi, I., Lamboley, J.: Blaschke–Santaló diagram for volume, perimeter and first Dirichlet eigenvalue. SIAM J. Math. Anal. 53(2), 1670–1710 (2021)

    Article  MathSciNet  Google Scholar 

  15. Henrot, A.: Extremum problems for eigenvalues of elliptic operators. Birkhäuser Basel (2006)

  16. Henrot, A.(Editor): Shape Optimization and Spectral Theory. De Gruyter (2017). https://www.degruyter.com/view/901product/490255

  17. Henrot, A., Pierre, M.: Shape variation and optimization. A geometrical analysis. Tracts Math. 28, EMS (2018)

  18. Hersch, J.: Sur la fréquence fondamentale d’une membrane vibrante: évaluations par défaut et principe de maximum. Z. Angew. Math. Phys. 11, 387–413 (1960)

    Article  MathSciNet  Google Scholar 

  19. Krasikov, I.: Approximations for the Bessel and Airy functions with an explicit error term. LMS J. Comput. Math. 17(1), 209–225 (2014)

    Article  MathSciNet  Google Scholar 

  20. Krasikov, I.: Uniform bounds for Bessel functions. J. Appl. Anal. 12(1), 83–91 (2006)

    Article  MathSciNet  Google Scholar 

  21. Mazzoleni, D., Zucco, D.: Convex combinations of low eigenvalues. Fraenkel asymmetries and attainable sets, ESAIM: COCV 23, 869–887 (2017)

    MATH  Google Scholar 

  22. Novruzi, A., Pierre, M.: Structure of shape derivatives. J. Evol. Equ. 2, 365–382 (2002)

    Article  MathSciNet  Google Scholar 

  23. Pólya, G., Szegő, G.: Isoperimetric Inequalities in Mathematical Physics. Series: Annals of Mathematics Studies, Princeton University Press, Princeton (1951)

    MATH  Google Scholar 

  24. Protter, M.H.: A lower bound for the fundamental frequency of a convex region. Proc. Am. Math. Soc. 81, 65–70 (1981)

    Article  MathSciNet  Google Scholar 

  25. Rao, M., Stetkaer, H.: Complex Analysis: An Invitation. World Scientific Publishing Co., A concise introduction to complex function theory (1991)

    Book  Google Scholar 

  26. Santaló, L.: Sobre los sistemas completos de desigualdades entre tres elementos de una figura convexa plana. Math. Notae 17, 82–104 (1961)

    Google Scholar 

  27. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, Encyclopedia Math. Appl. 58, Cambridge University Press, Cambridge (1993)

  28. Sokolowski, J., Zolésio, J-P.: Introduction to shape optimization. Shape sensitivity analysis, Springer Series in Computational Mathematics 16, Berlin (1992)

  29. van den Berg, M., Buttazzo, G., Pratelli, A.: On the relations between principal eigenvalue and torsional rigidity. Commun. Contemp. Math.

  30. van den Berg, M., Buttazzo, G., Velichkov, B.: Optimization problems involving the first Dirichlet Eigenvalue and the torsional rigidity. New Trends in Shape Opt. 19–41 (2015)

  31. van den Berg, M., Ferone, V., Nitsch, C., Trombetti, C.: On Pólya’s inequality for torsional rigidity and; first Dirichlet eigenvalue. Integral Equ. Oper. Theory 86(4), 579–600 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to A. Henrot for having suggested the problem, and thank G. Buttazzo, I. Ftouhi, A. Henrot, and J. Lamboley for the fruitful discussions. The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The work of I.L. was partially supported by the project ANR-18-CE40-0013 SHAPO financed by the French Agence Nationale de la Recherche (ANR), and by the Ypatia Laboratory of Mathematical Sciences (LIA LYSM AMU CNRS ECM INdAM). I.L. acknowledges the Math Department of the University of Pisa for the hospitality. D.Z. acknowledges support of the Research Project INdAM for Young Researchers (Starting Grant) Optimal Shapes in Boundary Value Problems and of the INdAM - GNAMPA Project 2018 Ottimizzazione Geometrica e Spettrale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Zucco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This section is devoted to the proof of Proposition 2.7, namely to the computation of the second-order shape derivatives of T and \(\lambda _1\) at \(\mathbb B\) in dimension 2, with respect to deformations which preserve convexity and keep the volume unchanged. For the formulas of shape derivatives see [17, Chapter 5] and [6, 7, 22]. Similar computations in terms of Fourier coefficients can be found in [1, 5].

The representation (2.6) in terms of support functions accounts for the convexity constraint. As for the volume constraint, since we perform a second-order analysis, it is enough to impose that the first and second-order shape derivatives of the area vanish. These imply a constraint on the Fourier coefficients.

Lemma 6.1

Let V and W be two admissible deformations in \({\mathcal {A}}\). Denote by \(\alpha\) and \(\beta\) be the first and second variation of the support function, defined according to (2.5)–(2.6). Then,

$$\begin{aligned} \int _0^{2\pi }\alpha (\theta )\mathrm {d}\theta =0,\quad \int _0^{2\pi } \beta (\theta )\mathrm {d}\theta = \frac{1}{R}\int _0^{2\pi }[\dot{\alpha }(\theta )^2 -\alpha (\theta )^2] \mathrm {d}\theta . \end{aligned}$$
(6.1)

Proof

By assumption, for every \(\epsilon\) small, the volume, denoted here by \(\mathrm {Vol}\), is constant, namely \(\mathrm {Vol}(\Omega _\epsilon )=\mathrm {Vol}(\mathbb B)\). In particular, \(\mathrm {Vol}'(\mathbb B;V)=\mathrm {Vol}''(\mathbb B;V,W)=0\). In view of the well-known formulas for \(\mathrm {Vol}'\) and \(\mathrm {Vol}''\) (see for instance [17, §5.9.3 and §5.9.6]), we have

$$\begin{aligned} \mathrm {Vol}'(\mathbb B;V)=\int _{\partial \mathbb B} V\cdot n \, \mathrm {d}{\mathcal {H}}^1 = 0, \quad \mathrm {Vol}''(\mathbb B;V,W)= \int _{\partial \mathbb B} [\kappa (V\cdot n)^2 + Z + W\cdot n]\, \mathrm {d}{\mathcal {H}}^1=0, \end{aligned}$$
(6.2)

where \(\kappa\) denotes the mean curvature, here equal to 1/R, and Z is the following function, defined on \(\partial \mathbb B\):

$$\begin{aligned} Z:=( D_\Gamma n\, V_\Gamma ) \cdot V_\Gamma - 2 [\nabla _\Gamma (V\cdot n)] \cdot V_\Gamma . \end{aligned}$$
(6.3)

The subscript \(\Gamma\) denotes the tangential component of a vector/operator: for a vector field U and a function f defined in the whole \({\mathbb {R}}^2\), there hold

$$\begin{aligned} U_\Gamma :=U - (U\cdot n) n\,,\quad D_\Gamma U :=D U - (DU\, n)\otimes n\,,\quad \nabla _\Gamma f:=\nabla f - (\nabla f \cdot n) n, \end{aligned}$$

where DU denotes the Jacobian matrix of U. Let us rewrite the boundary integrals in (6.2) in polar coordinates: in view of (2.5), we have \(V\cdot n = \alpha\), \(V\cdot \tau =\dot{\alpha }\), and \(W\cdot n = \beta\), so that (6.2) reads

$$\begin{aligned} \int _0^{2\pi } \alpha (\theta )\mathrm {d}\theta = \int _0^{2\pi }[\alpha (\theta )^2 + R Z + R\beta ] \mathrm {d}\theta =0. \end{aligned}$$
(6.4)

Choosing any extension of n, \(\tau\), and V to \({\mathbb {R}}^2\), we find \(( D_\Gamma n\, V_\Gamma ) \cdot V_\Gamma =[\nabla _\Gamma (V\cdot n)] \cdot V_\Gamma =\dot{\alpha }^2/R\), so that

$$\begin{aligned} Z(R \cos \theta , R \sin \theta )=- \frac{\dot{\alpha }^2}{R}. \end{aligned}$$
(6.5)

Inserting this expression in (6.4), we conclude the proof. \(\square\)

Proof of Proposition 2.7

Throughout the proof, for brevity, we will omit the subscript \(\mathbb B\) in the first eigenfunction and in the torsional rigidity, which will be denoted by \(\varphi\) and w, respectively. The second-order shape derivatives of \(\lambda _1\) and T at \(\mathbb B\) are

$$\begin{aligned} \lambda _1''(\mathbb B;V,W)&= \int _{\partial \mathbb B} \left( - W\cdot n- Z + \kappa (V\cdot n)^2 \right) |\partial _\nu \varphi |^2 \mathrm {d}\mathcal H^1 + 2 \int _{\partial \mathbb B}\psi \partial _\nu \psi \mathrm {d}{\mathcal {H}}^1, \end{aligned}$$
(6.6)
$$\begin{aligned} T''(\mathbb B;V,W)&= \int _{\partial \mathbb B} \left[ \left( W\cdot n + Z - \kappa (V\cdot n)^2\right) |\partial _\nu w|^2 + 2 (V\cdot n)^2 |\partial _\nu w| \right] \mathrm {d}{\mathcal {H}}^1 - 2 \int _{\partial \mathbb B} v \partial _\nu v \, \mathrm {d}{\mathcal {H}}^1, \end{aligned}$$
(6.7)

where \(\kappa\) is the curvature, Z is the function introduced in (6.3), and \(\psi\) and v solve

$$\begin{aligned} \left\{ \begin{array}{lll} -\Delta \psi = \lambda _1(\mathbb B) \psi - \varphi \int _{\partial \mathbb B} |\partial _\nu \varphi |^2 V\cdot n\, \mathrm {d}{\mathcal {H}}^1 \quad &{} \hbox {in }\mathbb B\\ \psi = -(V\cdot n) \partial _\nu \varphi \quad &{} \hbox {on }\partial \mathbb B\\ \int _{\mathbb B} \psi \varphi =0 \end{array} \right. \qquad \left\{ \begin{array}{lll} \Delta v = 0\quad &{} \hbox {in }\mathbb B\\ v = -(V\cdot n) \partial _\nu w \quad &{} \hbox {on }\partial \mathbb B. \end{array} \right. \end{aligned}$$
(6.8)

We recall that the torsion function of the disk \(\mathbb B\) is \(w=(R^2- |x|^2)/4\) so that, on the boundary, we have \(|\partial _\nu w| =R/2\). Similarly, since the first eigenfunction of the Dirichlet Laplacian, normalized in \(L^2\), is \(\varphi = J_0(j_{0,1} |x|/R )/|J_0'(j_{0,1})|\), we have \(|\partial _\nu \varphi |=j_{0,1}/R\) on the boundary. Let us perform the change of variables in polar coordinates in the integrals above. Using the fact that \(\kappa =1/R\), writing Z as in (6.5), recalling the expression (2.5) of V on \(\partial \mathbb B\) in terms of \(\alpha\), and exploiting the conditions (6.1) on \(\alpha\) and \(\beta\), we obtain a first simplification:

$$\begin{aligned} \lambda _1''(\mathbb B;V,W)&= \frac{2 j_{0,1}^2}{R^2} \int _0^{2\pi } \alpha ^2 \mathrm {d}\theta + 2 R \int _0^{2\pi }\psi \partial _\nu \psi \, \mathrm {d}\theta , \end{aligned}$$
(6.9)
$$\begin{aligned} T''(\mathbb B;V,W)&= \frac{R^2}{2} \int _0^{2\pi } \alpha ^2\mathrm {d}\theta - 2 R \int _0^{2\pi } v \partial _\nu v \, \mathrm {d}\theta . \end{aligned}$$
(6.10)

Let us now determine \(\psi\) in terms of \(\alpha\) and of its Fourier coefficients \(a_m\) and \(b_m\). First, we notice that, in view of the condition \(\int \alpha =0\) in (6.1), the PDE solved by \(\psi\) is \(-\Delta \psi = \lambda _1(\mathbb B)\psi\). Therefore, it is natural to look for \(\psi\) as a linear combination (possibly a series) of the eigenfunctions \(J_m(j_{0,1} \rho /R)\cos (m\theta )\) and \(J_m(j_{0,1} \rho /R)\sin (m\theta )\) associated to the eigenvalue \(\lambda _1(\mathbb B)=j_{0,1}^2/R^2\), namely \(\psi (\rho ,\theta )=\sum _{m\ge 0} [A_m \cos (m\theta ) + B_m \sin (m \theta )] J_m(j_{0,1}\rho /R)\). The orthogonality condition between \(\psi\) and the radial function \(\varphi\) gives \(A_0=0\). Imposing the boundary condition \(\psi (R,\theta )=j_{0,1}\alpha (\theta )/R\), we get

$$\begin{aligned} A_m=\frac{j_{0,1} a_m}{ R J_m (j_{0,1})}\,,\quad B_m=\frac{ j_{0,1} b_m}{R J_m (j_{0,1})}\,,\quad \forall m\ge 1\,. \end{aligned}$$

A direct computation leads to

$$\begin{aligned} \int _{0}^{2\pi } \psi \partial _\nu \psi \mathrm {d}\theta = \frac{\pi j_{0,1}^3}{R^3} \sum _{m\ge 1 }\frac{J_m'(j_{0,1})}{J_m(j_{0,1})}(a_m^2 + b_m^2). \end{aligned}$$
(6.11)

By combining (6.9) and (6.11), recalling that \(\int _0^{2\pi } \alpha ^2 = \pi \sum _{m\ge 1}(a_m^2 + b_m^2)\) and using \(j_{0,1} J_1'(j_{0,1})=- J_1(j_{0,1})\), we get

$$\begin{aligned} \lambda _1''(\mathbb B;V,W) = \frac{2\pi j_{0,1}^2}{R^2} \sum _{m\ge 2}\left[ \left( 1 + j_{0,1}\frac{J_m'(j_{0,1})}{J_m(j_{0,1})} \right) (a_m^2+b_m^2)\right] . \end{aligned}$$

Following the same procedure, we may derive v as a function of \(a_m\) and \(b_m\). Formally, v can be searched as the infinite sum of harmonic functions, namely \(v(\rho ,\theta )=\sum _{m\ge 0} [C_m \cos (m\theta ) + D_m \sin (m\theta )] \rho ^m\). Imposing the boundary condition, we obtain

$$\begin{aligned} C_0=D_0=0\,,\quad C_m = \frac{a_m}{2 R^{m-1}} \,,\quad D_m = \frac{ b_m}{2R^{m-1}}\,,\quad \forall m\ge 1\,. \end{aligned}$$

In particular,

$$\begin{aligned} \int _0^{2\pi } v \partial _\nu v \mathrm {d}\theta = \frac{\pi R}{4} \sum _{m\ge 1} m (a_m^2 + b_m^2), \end{aligned}$$

and (6.10) reads

$$\begin{aligned} T''(\mathbb B;V,W) = \frac{\pi R^2}{2} \sum _{m\ge 2} \left[ (1-m)(a_m^2 + b_m^2) \right] . \end{aligned}$$

This concludes the proof. \(\square\)

Remark 6.2

At first sight, the equalities (2.8)–(2.9) might seem surprising, since W apparently does not play any role. Actually, as it is clear from the formulas used in the previous proof, in the second-order shape derivatives only the normal component of W appears, averaged with \(|\nabla w_\mathbb B|^2\) or \(|\nabla \varphi _\mathbb B|^2\) on the boundary. Since both norms of the gradients are constant, the relevant quantity is the average of \(W\cdot n\). The average is nothing but \(\int \beta = c_0\), which in turn can be written in terms of \(\alpha\) or \(\{a_m, b_m\}\), as we have proved in Lemma 6.1 and rephrased in (2.7).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucardesi, I., Zucco, D. On Blaschke–Santaló diagrams for the torsional rigidity and the first Dirichlet eigenvalue. Annali di Matematica 201, 175–201 (2022). https://doi.org/10.1007/s10231-021-01113-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-021-01113-6

Keywords

Mathematics Subject Classification

Navigation