Skip to main content
Log in

A theory of fatigue crack growth

  • Published:
International Journal of Fracture Mechanics Aims and scope Submit manuscript

Abstract

Existing experimental data on fatigue crack growth are summarized. A fatigue crack growth model is proposed, based on the different crack tip geometries of a loaded and unloaded crack; the model leads to predictions of the rates of growth of fatigue cracks, in certain materials, comparable to those determined experimentally.

Résumé

Les données expérimentales disponsibles sur la fissuration progressive sous chargement cyclique sont résumées. Un schéma de la fissuration progressive sous chargement cyclique est propesé, qui se base sur les differéntes formes adoptées par l'extrémité d'une fissure selon que celle-ci est sollicitée ou non; ce schéma permet une prédiction des vitesses de fissuration progressive sous chargement cyclique qui se rapproche de celles établies par détermination expérimentale.

Zusammenfassung

Bestehende, experimentelle Angaben über die Ermüdungsrissvergrösserung werden zusammengefasst. Ein auf die verscheidenen mit dem beanspruchten und nicht beanspruchten Riss verbundenen Rissspitzformen gegründetes Modell der Ermüdungsrissvergrösserung wird vorgeschlagen; es ermöglicht Vorhersagen von Ermüdungsrissvergrösserungsgeschwindigkéiten, die sich den aus gewisse Werkstoffe experimentell festgestellten gut zuordnen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frost, N. E. J. Mech.Phys.Solids, 9, 1961,143.

    Google Scholar 

  2. Frost, N. E. Proc. 1st Internat. Conf.Fracture, Sendai, Japan, 1965, 3, 1433.

    Google Scholar 

  3. Forsyth, P.J.E. Proc. Crack Propagation Symp., 1, 1961, Cranfield, College of Aeronautics, 76.

  4. Frost, N. E. J.Mech. Engng. Sci., 4, 1962, 22.

    Google Scholar 

  5. Holden, J. Acta Metall., 11, 1963, 691.

    Google Scholar 

  6. McEvily, A.J., Boetner, R.C. Johnston T.L. Fatigue, 1963, Syracuse Univ. Press. New York, 95.

    Google Scholar 

  7. Laird, C. and Smith, G.C. Phil. Mag., 7, 1962, 847.

    Google Scholar 

  8. Frost, N.E. and Dugdale, D.S. J. Mech. Phys. Solids., 5, 1957, 182.

    Google Scholar 

  9. Wadsworth, N.J. and Hutchings J. Phil. Mag., 34, 1958, 1154.

    Google Scholar 

  10. Wadsworth, N.J. Phil. Mag., 6, 1961, 397.

    Google Scholar 

  11. Frost, N. E. Appl. Mat. Res., 3, 1964,131.

    Google Scholar 

  12. Head, A. K. Phil. Mag., 44, 1953, 925.

    Google Scholar 

  13. Weibull, W. Proc. Crack Propagation Symp., 2, 1961, College of Aeronautics, Cranfield, 271.

    Google Scholar 

  14. Frost, N.E. and Dugdale D.S. J. Mech. Phys. Solids, 6, 1968, 92.

    Google Scholar 

  15. Liu, H. W. Trans ASME, J. Basic Engng., 83,1961, 23.

    Google Scholar 

  16. Donaldson, D.R. andAnderson W. E. Proc. Crack Propagation Symp., 2, 1961, College of Aeronautics, Cranfield, 375.

    Google Scholar 

  17. Paris, P. and Erdogan, F. Trans ASME, J. Basic Engng. 85, 1963, 528.

    Google Scholar 

  18. Pearson, S. Nature, 211, 1966, 1077.

    Google Scholar 

  19. Frost, N.E., Holden, J. and Philips C.E. Acta Tech. Hungary, 35, 1961, 115.

    Google Scholar 

  20. Schivje, J., Nederveen, A. and Jacobs F.A. National Aero. and Astronautical Research Institute, Amsterdam, NLR-TR, M2142, 1965.

  21. Cottrell, A. H. Mechanical Properties of Matter, J. Wiley & Sons, New York, 1964.

    Google Scholar 

  22. Inglis, C.E. Trans, Instn. Nav. Archit., 55, 1, 1913, 219.

    Google Scholar 

  23. Byrd, P. F. and Friedman M.D. Handbook of Elliptic Integrals for Engineers and Physicists, Springer-Verlag, Berlin, 1954.

    Google Scholar 

  24. Greenspan, M. J. Res. Nat. Stand., 31, 1943, 305.

    Google Scholar 

  25. Dixon, J.R. Inter. J.Frac. Mech., 1, 1965, 224.

    Google Scholar 

  26. Kemsley, D.S.J. Inst. Metals, 85, 1957, 417 and 420.

    Google Scholar 

  27. Siede, A. and Metcalfe A.C. Trans. Metall. AIME, 215, 1959, 947.

    Google Scholar 

  28. Dugdale, D. S. J.Mech. Phys. Solids, 8, 1960,100–104.

    Google Scholar 

  29. Goodier, J.N. and Field F.A. Fracture of Solids, Interscience Publishers, New York, 1962, 103–118.

    Google Scholar 

  30. Pelloux, R.M.N. Am. Soc. Mech. Engrs., 57, 1964, 511.

    Google Scholar 

  31. Frost, N.E. and Greenan A. J. Mech. Engng. Sci., 9, 1967, 234.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frost, N.E., Dixon, J.R. A theory of fatigue crack growth. Int J Fract 3, 301–316 (1967). https://doi.org/10.1007/BF00182895

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00182895

Keywords

Navigation