Skip to main content
Log in

Attenuation of renal ischaemic injury by felodipine

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

Felodipine is a vasodilating calcium channel blocker of the dihydropyridine type. The effects of felodipine on post-ischaemic renal function were evaluated in rats subjected to bilateral renal artery occlusion for 30 or 60 min.

In a first set of experiments the recovery of renal function after 30 or 60 min of renal artery occlusion was followed intermittently for 16 days by endogenous creatinine clearance. Renal function was better preserved in rats given felodipine (45 nmol/kg i.v.) during the occlusion period than in vehicle-treated control rats. The survival rate after 60-min occlusion was 11% in controls but 70% in the felodipine-treated rats. After occlusion for 30 min the survival rate was similar in the two groups, but renal function recovered faster in the felodipine group than in the controls.

In a second series, acute renal damage was evaluated by the extent of erythrocytes trapped in the kidney after 30-min reperfusion following 60-min renal artery occlusion. Felodipine administration (45 nmol/kg) during the occlusion reduced renal damage compared with vehicle controls. Kidney weight and systemic haematocrit were also better maintained in the felodipine-treated rats. Furthermore, renal damage was reduced by the t-butyl analogue or felodipine, H 186/86, which is devoid of vasodilatory effects. The results demonstrate that treatment with the vasodilator calcium channel blocker felodipine protects the kidney from ischaemic/reperfusion injuries. The tissue protection is not related to the haemodynamic effects alone, since the haemodynamically inactive dihydropyridine H 186/86 also reduced the extent of renal damage. An additional antiperoxidant or scavanger-like effect inherent in the dihydropyridine molecule is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahnoff M (1984) Determination of felodipine in plasma by gas chromatography with electron capture detection. J Pharm Biol Anal 2:519–526

    Article  CAS  Google Scholar 

  • Bäärnhielm C, Hansson G (1986) Oxidation of 1,4-dihydropyridines by prostaglandin synthase and the peroxidic function of cytochrome P-450. Biochem Pharmacol 35:1419–1425

    Article  Google Scholar 

  • Bard AJ, Faulkner LR (1980) Electrochemical methods, fundamentals and applications. Wiley, New York, pp 213–248

    Google Scholar 

  • Bermsson P, Johansson E, Westerlund C (1987) Felodipine analogs: structure-activity relationships. J Cardiovasc Pharmacol 10 (Suppl):60–65

    Article  Google Scholar 

  • Burke TJ, Arnold PE, Gordon JA, Bulger RE, Dobyan DC, Schrier RW (1984) Protective effect of intrarenal calcium membrane blockers before or after renal ischemia. Clin Invest 74:1830–1841

    Article  CAS  Google Scholar 

  • Chintala MS, Jandhyala BS (1990a) Renal failure in haemorrhagic shock in dogs: salutory effects of a calciumantagonist felodipine. Naunyn-Schmiedeberg's Arch Pharmacol 34:357–363

    Google Scholar 

  • Chintala MS, Jandhyala BS (1990b) Comparative eveluation of the effects of felodipine, hydralazine and naloxone on the survival rate in rats subjected to “a fixed volume” model of haemorrhagic shock. Circulatory Shock 32:219–229

    CAS  PubMed  Google Scholar 

  • DiBona GF, Sawin LL (1984) Renal tubular site of action of felodipine. J Pharmacol Exp Ther 228:420–428

    CAS  PubMed  Google Scholar 

  • Edgar B, Elmfeldt D (1987) Relation between plasma concentration of felodipine and effect on distolic blood pressure. Cardiovasc Drug Ther 1:232

    Google Scholar 

  • Elmfeldt D, Westerling S (1987) Aspects on the benefit — risk balance of felodipine in hypertension. Drugs 34 [Suppl 3]:132–135

    Article  Google Scholar 

  • Hellberg POA, Bayati A, Källskog O, Wolgast M (1990) Trapping of red blood cells in outer medullary vasculature after ischemia and long-term kidney damage. Influence of hematocrit. Kidney Int 37:1240–1247

    Article  CAS  Google Scholar 

  • Hertle L, Garthoff B (1985) Calcium channel blocker nisoldipine limits ischemic damage in rat kidney. Urology 134:1251–1254

    Article  CAS  Google Scholar 

  • Herbaczynska-Cedro K, Gordon-Majszak W (1990) Nisoldipine inhibits lipid peroxidation induced by coronary occlusion in pig myocardium. Cardiovasc Res 24:683–687

    Article  CAS  Google Scholar 

  • Hopkins RJ, Hill TWK (1985) Effects of felodipine on red blood cell deformability. Drugs 29 (suppl 2) 42–44

    Article  Google Scholar 

  • Jacobsson J, Odlind B, Tufveson G, Wahlberg J (1988) Effects of cold ischemia and reperfusion on trapping of erythrocytes in the rat kidney. Transplant Int 1:75–79

    Article  CAS  Google Scholar 

  • Janero D, Burghardt B (1989) Antiperoxidant effects of dihydropyridine calcium antagonists. Biochem Pharmacol 38:4344–4348

    Article  CAS  Google Scholar 

  • Jandhyala B, Chintala M (1990) Salutary effects of dihydropyridines with and without calciumantagonistic properties on ischemic renal failure in hemorrhagic shock: A role for scavanger like action. Kidney Int 37:485

    Google Scholar 

  • Karlberg L (1982) Renal medullary blood flow studied with the 86Rb extraction method. Acta Physiol Scand 115:11–18

    Article  CAS  Google Scholar 

  • Kloner RA, Braunwald E (1987) Effects of calcium antagonists on infarcting myocardium. Am J Cardiol 59:84B-94B

    Article  CAS  Google Scholar 

  • Ljung B (1985) Vascular selectivity of felodipine. Drugs 29 [Suppl 2]:46–58

    Article  Google Scholar 

  • Mason J, Torhorst J, Welsch J (1984) Role of the medullary perfusion defect in the pathogenesis of ischemic renal failure. Kidney Int 26:283–293

    Article  CAS  Google Scholar 

  • Nordlander M (1985) Hemodynamic effects of short and long term administration of felodipine in spontaneously hypertensive rats. Drugs 29 [Suppl 2]:90–101

    Article  Google Scholar 

  • Nordlander M, DiBona GF, Ljung B, Yao T, Thorén P (1985) Renal and cardiovascular effects of acute and chronic administration of felodipine to SHR. Eur J Pharmacol 113:25–36

    Article  CAS  Google Scholar 

  • Puschett JB (1987) Do calcium channel blockers protect against renal ischemia? Am J Nephrol 7 [Suppl 1]:49–56

    Article  Google Scholar 

  • Schrier RW, Arnold PE, Van Putten VJ, Burke TJ (1987) Cellular calcium in ischemic acute renal failure: role of calcium entry blockers. Kidney Int 32:313–321

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Send offprint requests to M. Nordlander at the above address

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thalén, P.G., Nordlander, M.I.L., Sohtell, M.E.H. et al. Attenuation of renal ischaemic injury by felodipine. Naunyn-Schmiedeberg's Arch Pharmacol 343, 411–417 (1991). https://doi.org/10.1007/BF00179047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00179047

Key words

Navigation