Skip to main content
Log in

High-resolution structure and dynamic implications for a double-helical gramicidin A conformer

  • Research Paper
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

The high-resolution structure of a dimeric conformer of gramicidin A, a 15-residue polypeptide, has been determined in the mixed-solvent system of benzene and ethanol by 2D NMR techniques. NOEs, coupling constants and hydrogen-bond information were used to generate 744 experimental constraints for the dimer. Stereoassignment of most β-methylene groups was achieved by analysis of 3Jαβ, dαβ(i,i), d(i,i) and d(i+1,i) distances, and consideration of the initial backbone structure determinations. Stereoassignment of several leucine methyl groups was accomplished via a distance geometry/simulated annealing routine, used for structure determination and refinement. The relatively static backbone structure was determined first and held rigid while side-chain conformations were calculated. This procedure is evaluated versus standard NMR structure determination protocols. The backbone is an antiparallel intertwined double helix, with 5.6–5.7 residues per turn, a total dimer length of 36–37 Å, and a pore width of 2.5–3.0 Å (van der Waals to van der Waals). The structure and dynamics of the side chains are discussed in depth, with careful attention for both the convergence of structures and the residual constraint violations per residue. Side-chain positions impart substantial amphipathic character to the helix, which could influence the conformational change that takes place upon membrane insertion of this channel-forming polypeptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, O. (1984) Annu. Rev. Physiol., 46, 531–548.

    Google Scholar 

  • Arseniev, A.S., Bystrov, V.F., Ivanov, V.T. and Ovchinnikov, Y.A. (1984) FEBS Lett., 165, 51–56.

    Google Scholar 

  • Baker, E.N. and Hubbard, R.E. (1984) Prog. Biophys. Mol. Biol., 44, 97–179.

    Google Scholar 

  • Bano, M. de C., Braco, L. and Abad, C. (1989) FEBS Lett., 250, 67–71.

    Google Scholar 

  • Bax, A. and Davis, D.G. (1985) J. Magn. Reson., 65, 355–360.

    Google Scholar 

  • Bhat, T.N., Sasisekharan, V. and Vijayan, M. (1979) Int. J. Pept. Protein Res., 13, 170–184.

    Google Scholar 

  • Bodenhausen, G. and Ernst, R.R. (1982) Mol. Phys., 47, 319–328.

    Google Scholar 

  • Braco, L., Abad, C., Campos, A. and Figueruelo, J.E. (1986) J. Chromatogr., 353, 181–182.

    Google Scholar 

  • Braunschweiler, L. and Ernst, R.R. (1983) J. Magn. Reson., 53, 521–528.

    Google Scholar 

  • Breeze, A.L., Harvey, T.S., Bazzo, R. and Campbell, I.D. (1991) Biochemistry, 30, 575–582.

    Google Scholar 

  • Brown, J.E. and Klee, W.A. (1971) Biochemistry, 10, 470–476.

    Google Scholar 

  • Brüschweiler, R., Blackledge, M. and Ernst, R.R. (1991) J. Biomol NMR, 1, 3–11.

    Google Scholar 

  • Bystrov, V.F. and Arseniev, A.S. (1988) Tetrahedron, 44, 925–940.

    Google Scholar 

  • Demarco, A., Clinas, M. and Wüthrich, K. (1978) Biopolymers, 17, 617–636.

    Google Scholar 

  • Dyson, H.J., Cross, K.J., Ostresh, J., Houghten, R.A., Wilson, I.A., Wright, P.E. and Lerner, R.A. (1985) Nature, 318, 480–483.

    Google Scholar 

  • Dyson, H.J., Rance, M., Houghten, R.A., Lerner, R.A. and Wright, P.E. (1988) J. Mol. Biol., 201, 161–200.

    Google Scholar 

  • Eberle, W., Pastore, A., Sander, C. and Rosch, P. (1991) J. Biomol. NMR, 1, 71–82.

    Google Scholar 

  • Fields, C.G., Fields, G.B., Noble, R.L. and Cross, T.A. (1989) Int. J. Pept. Protein Res., 33, 298–303.

    Google Scholar 

  • Fisher, R. and Blumenthal, T. (1982) Proc. Natl. Acad. Sci. USA, 79, 1045–1048.

    Google Scholar 

  • Jeener, J., Meier, B.H., Bachmann, P. and Ernst, R.R. (1979) J. Chem. Phys., 71, 4546–4553.

    Google Scholar 

  • Karpen, M.E., Tobias, D.J. and BrooksIII, C.L. (1993) Biochemistry, 32, 412–420.

    Google Scholar 

  • Katsaras, J., Prosser, R.S., Stinson, R.H. and Davis, J.H. (1992) Biophys. J., 61, 827–830.

    Google Scholar 

  • Katz, E. and Demain, A.L. (1977) Bacteriol. Rev., 41, 449–474.

    Google Scholar 

  • Killian, J.A. (1992) Biochim. Biophys. Acta, 1113, 391–425.

    Google Scholar 

  • Killian, J.A., Nicholson, L.K. and Cross, T.A. (1988a) Biochim. Biophys. Acta, 943, 535–540.

    Google Scholar 

  • Killian, J.A., Prasad, K.U., Hains, D. and Urry, D.W. (1988b) Biochemistry, 27, 4848–4855.

    Google Scholar 

  • Kim, Y. and Prestegard, J.H. (1989) J. Magn. Reson., 84, 9–13.

    Google Scholar 

  • Kumar, A., Ernst, R.R. and Wüthrich, K. (1980) Biochem. Biophys. Res. Commun., 95, 1–6.

    Google Scholar 

  • Langs, D.A. (1988) Science, 241, 188–191.

    Google Scholar 

  • Langs, D.A., Smith, G.D., Courseille, C., Precigoux, G. and Hospital, M. (1991) Proc. Natl. Acad. Sci. USA, 88, 5345–5349.

    Google Scholar 

  • LoGrasso, P.V., MollIII, F. and Cross, T.A. (1988) Biophys. J., 54, 259–267.

    Google Scholar 

  • Lynch, B. and Kaiser, E.T. (1988) Biochemistry, 27, 7600–7607.

    Google Scholar 

  • Mack, J.W., Torschi, D.A. and Steinert, P.M. (1988) Biochemistry, 27, 5418–5426.

    Google Scholar 

  • Mitchell, J.B.O. and Price, S.L. (1990) J. Comput. Chem., 11, 1217–1233.

    Google Scholar 

  • MollIII, F. and Cross, T.A. (1990) Biophys. J., 57, 351–362.

    Google Scholar 

  • Mueller, L. (1987) J. Magn. Reson., 72, 191–196.

    Google Scholar 

  • Nicholson, L.K. and Cross, T.A. (1989) Biochemistry, 28, 9379–9385.

    Google Scholar 

  • Nilges, M., Clore, G.M. and Gronenborn, A.M. (1988) FEBS Lett., 229, 317–324.

    Google Scholar 

  • Nilges, M., Kuszewski, J. and Brunger, A.T. (1992) X-PLOR Manual, version 3.0.

  • Pascal, S.M. and Cross, T.A. (1992) J. Mol. Biol., 226, 1101–1109.

    Google Scholar 

  • Pascal, S.M. and Cross, T.A. (1993) Life Sci. Adv. Biophys., in press.

  • Piantini, O.W., Sørensen, O.W. and Ernst, R.R. (1982) J. Am. Chem. Soc., 104, 6800–6801.

    Google Scholar 

  • Ramachandran, G.N. and Chandrasekaran, R. (1972) Indian J. Biochem. Biophys., 9, 1–11.

    Google Scholar 

  • Rance, M., Bodenhausen, G., Wagner, G., Wüthrich, K. and Ernst, R.R. (1985) J. Magn. Reson., 62, 497–510.

    Google Scholar 

  • Roux, B., Bruschweiler, R. and Ernst, R.R. (1990) Eur. J. Biochem., 194, 57–60.

    Google Scholar 

  • Sarkar, N., Langley, D. and Paulus, H. (1977) Proc. Natl. Acad. Sci. USA, 74, 1478–1482.

    Google Scholar 

  • Shaka, A.J. and Freeman, R. (1983) J. Magn. Reson., 51, 169–173.

    Google Scholar 

  • States, D.J., Haberkorn, R.A. and Ruben, D.J. (1982) J. Magn. Reson., 48, 286–292.

    Google Scholar 

  • Summers, M.F., South, T.L., Kim, B. and Hare, D. (1990) Biochemistry, 29, 329–340.

    Google Scholar 

  • Torda, A.E., Scheek, R.M. and Van Gunsteren, W.F. (1990) J. Mol. Biol. 214, 223–235.

    Google Scholar 

  • Veatch, W.R., Fossel, E.T. and Blout, E.R. (1974) Biochemistry, 13, 5249–5256.

    Google Scholar 

  • Williamson, M.P., Hall, M.J. and Handa, B.K. (1986) Eur. J. Biochem., 158, 527–536.

    Google Scholar 

  • Wüthrich, K., Billeter, M. and Braun, W. (1983) J. Mol. Biol., 169, 949–961.

    Google Scholar 

  • Zhang, Z., Pascal, S.M. and Cross, T.A. (1992) Biochemistry, 31, 8822–8828.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pascal, S.M., Cross, T.A. High-resolution structure and dynamic implications for a double-helical gramicidin A conformer. J Biomol NMR 3, 495–513 (1993). https://doi.org/10.1007/BF00174606

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00174606

Keywords

Navigation