Skip to main content
Log in

Theories of magnetospheres around accreting compact objects

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

A wide class of galactic X-ray sources are believed to be binary systems where mass is flowing from a normal star to a companion that is a compact object, such as a neutron star. The strong magnetic fields of the compact object create a magnetosphere around it. We review the theoretical models developed to describe the properties of magnetospheres in such accreting binary systems. The size of the magnetosphere can be estimated from pressure balance arguments and is found to be small compared to the over-all size of the accretion region but large compared to the compact object if the latter is a neutron star. In the early models the magnetosphere was assumed to have open funnels in the polar regions, through which accreting plasma could pour in. Later, magnetically closed models were developed, with plasma entry made possible by instabilities at the magnetosphere boundary. The theory of plasma flow inside the magnetosphere has been formulated in analogy to a stellar wind with reversed flow; a complicating factor is the instability of the Alfvén critical point for inflow. In the case of accretion via a well-defined disk, new problems of magnetospheric structure appear, in particular the question to what extent and by what process the magnetic fields from the compact object can penetrate into the accretion disk. Since the X-ray emission is powered by the gravitational energy released in the accretion process, mass transfer into the magnetosphere is of fundamental importance; the various proposed mechanisms are critically examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfvén, H. and Fälthammar, C.-G.: 1971, Cosmic Electrodynamics 2, 78.

    Google Scholar 

  • Arons, J. and Lea, S. M.: 1976a, Astrophys. J. 207, 914.

    Google Scholar 

  • Arons, J. and Lea, S. M.: 1976b, Astrophys. J. 210, 792.

    Google Scholar 

  • Baan, W. A. and Treves, A.: 1973, Astron. Astrophys. 22, 421.

    Google Scholar 

  • Baan, W. A.: 1977. Astrophys. J. 214, 245.

    Google Scholar 

  • Baan, W. A.: 1979, Astrophys. J. 227, 987.

    Google Scholar 

  • Bahcall, J. N., Rosenbluth, M. N., and Kulsrud, R. M.: 1973, Nature Phys. Sci. 243, 27.

    Google Scholar 

  • Block, L. P.: 1975, in B. Hultqvist and L. Stenflo (eds.), Physics of the Hot Plasma in the Magnetosphere, Plenum Press, New York, p. 229.

    Google Scholar 

  • Blumenthal, G. R. and Tucker, W. H.: 1974, Ann. Rev. Astron. Astrophys. 12, 23.

    Google Scholar 

  • Chia, T. T. and Henriksen, R. N.: 1972, Astrophys. J. 177, 699.

    Google Scholar 

  • Davidson, K. and Ostriker, J. P.: 1973, Astrophys. J. 179, 585.

    Google Scholar 

  • Davies, R. E., Fabian, A. C., and Pringle, J. E.: 1979, Monthly Notices Roy. Astron. Soc. 186, 779.

    Google Scholar 

  • Eardley, D. M. and Press, W. H.: 1975, Ann. Rev. Astron. Astrophys. 13, 381.

    Google Scholar 

  • Elsner, R. F.: 1976, Ph.D. thesis, University of Illinois at Urbana-Champaign.

  • Elsner, R. F. and Lamb, F. K.: 1976, Nature 262, 356.

    Google Scholar 

  • Elsner, R. F. and Lamb, F. K.: 1977, Astrophys. J. 215, 897.

    Google Scholar 

  • Fairfield, D. H.: 1967, J. Geophys. Res. 72, 5865.

    Google Scholar 

  • Ghosh, P., Lamb, F. K., and Pethick, C. J.: 1977, Astrophys. J. 217, 578.

    Google Scholar 

  • Ghosh, P. and Lamb, F. K.: 1978, Astrophys. J. 223, L83.

    Google Scholar 

  • Ghosh, P. and Lamb, F. K.: 1979, Astrophys. J. 232, 259.

    Google Scholar 

  • Gold, T.: 1959, J. Geophys. Res. 64, 1219.

    Google Scholar 

  • Gorenstein, P. and Tucker, W. H.: 1976, Ann. Rev. Astron. Astrophys. 14, 373.

    Google Scholar 

  • Henriksen, R. N. and Chia, T. T.: 1972, Nature Phys. Sci. 240, 133.

    Google Scholar 

  • Henriksen, R. N., Reinhardt, M., and Aschenbach, B.: 1973, Astron. Astrophys. 28, 47.

    Google Scholar 

  • Henriksen, R. N. and Reinhardt, M.: 1974, Astron. Astrophys. 31, 195.

    Google Scholar 

  • Hill, T. W.: 1974, Rev. Geophys. Space Phys. 12, 379.

    Google Scholar 

  • Holloway, N., Kundt, W., and Wang, Y.-M: 1978, Astron. Astrophys. 70, L23.

    Google Scholar 

  • Ichimaru, S.: 1975, Astrophys. J. 202, 528.

    Google Scholar 

  • Ichimaru, S.: 1977, Astrophys. J. 214, 840.

    Google Scholar 

  • Ichimaru, S.: 1978, Astrophys. J. 224, 198.

    Google Scholar 

  • Illarionov, A. F. and Sunyaev, R. A.: 1975, Astron. Astrophys. 39, 185.

    Google Scholar 

  • Joss, P. C.: 1978, Astrophys. J. 225, L123.

    Google Scholar 

  • Joss, P. C: 1979, Comments on Astrophys. 8, 109.

    Google Scholar 

  • Kantrowitz, A. and Petschek, H. E.: 1966, in W. B. Kunkel (ed.), Plasma Physics in Theory and Application, McGraw-Hill Book Co., New York, p. 148.

    Google Scholar 

  • Lamb, F. K., Pethick, C. J., and Pines, D.: 1973, Astrophys. J. 184, 271.

    Google Scholar 

  • Lamb, F. K., Fabian, A. C., Pringle, J. E., and Lamb, D. Q.: 1977, Astrophys. J. 217, 197.

    Google Scholar 

  • Lewin, W. H. G.: 1979, in W. A. Baity and L. E. Petersen (eds.), (Cospar) X-Ray Astronomy, Pergamon Press, Oxford and New York, p. 133.

    Google Scholar 

  • Lewin, W. H. G. and Joss, P. C.: 1977, Nature 270, 211.

    Google Scholar 

  • Mead, G. D. and Beard, D. B.: 1964, J. Geophys. Res. 69, 1181.

    Google Scholar 

  • Mestel, L.: 1968, Monthly Notices Roy. Astron. Soc. 138, 359.

    Google Scholar 

  • Michel, F. C.: 1977a, Astrophys. J. 213, 836.

    Google Scholar 

  • Michel, F. C.: 1977b, Astrophys. J. 214, 261.

    Google Scholar 

  • Michel, F. C.: 1977c, Astrophys. J. 216, 838.

    Google Scholar 

  • Midgley, J. E. and Davis, L. Jr.: 1962, J. Geophys. Res. 67, 499.

    Google Scholar 

  • Midgley, J. E. and Davis, L. Jr.: 1963:, J. Geophys. Res. 68, 5111.

    Google Scholar 

  • Neugebauer, M. and Tsurutani, B. T.: 1978, Astrophys. J. 226, 494.

    Google Scholar 

  • Nishida, A.: 1978, Geomagnetic Diagnosis of the Magnetosphere, Springer-Verlag, New York.

    Google Scholar 

  • Papadopoulos, K.: 1977, Rev. Geophys. Space Phys. 15, 113.

    Google Scholar 

  • Pringle, J. E. and Rees, M. J.: 1972, Astron. Astrophys. 21, 1.

    Google Scholar 

  • Rappaport, S. and Joss, P. C.: 1977, Nature 266, 683.

    Google Scholar 

  • Scharlemann, E. T.: 1978, Astrophys. J. 219, 617.

    Google Scholar 

  • Shakura, N. I. and Sunyaev, R. A.: 1973, Astron. Astrophys. 24, 337.

    Google Scholar 

  • Slutz, R. J. and Winkelman, J. R.: 1964, J. Geophys. Res. 69, 4933.

    Google Scholar 

  • Spreiter, J. R., Alksne, A. Y., and Summers, A. L.: 1968, in R. L. Carovillano, J. F. McClay, and H. R. Radoski (eds.), Physics of the Magnetosphere, D. Reidel Publishing Co., Dordrecht, Holland, p. 301.

    Google Scholar 

  • Spreiter, J. R. and Alksne, A. Y.: 1969, Rev. Geophys. 7, 11.

    Google Scholar 

  • Thomas, H.-C.: 1977, Ann. Rev. Astron. Astrophys. 15, 127.

    Google Scholar 

  • Vasyliunas, V. M.: 1975, Rev. Geophys. Space Phys. 13, 303.

    Google Scholar 

  • Williams, D. J.: 1975, Monthly Notices Roy. Astron. Soc. 171, 537.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Proceedings of the NASA/JPL Workshop on the Physics of Planetary and Astrophysical Magnetospheres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasyliunas, V.M. Theories of magnetospheres around accreting compact objects. Space Sci Rev 24, 609–634 (1979). https://doi.org/10.1007/BF00172216

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00172216

Keywords

Navigation