Skip to main content

Location of the Inner Edges of Astrophysical Discs Related to the Central Object

  • Conference paper
  • First Online:
Multi-scale Dynamical Processes in Space and Astrophysical Plasmas

Abstract

The accreting ionized gas surrounding a neutron star or white dwarf creates an accretion disc. Radius R A (the Alfven radius), where the magnetic energy density is equal to the kinetic energy density is an inner boundary of a disc. Accretion disc in a binary system and around a black hole is disrupted at a radius R A . The heliospheric current sheet’s inner edge is also located at the solar Alfven radius. The inner edges of the Jupiter and Saturn discs are located close to their Alfven radii determined by the plasma azimuthal velocities. Due to the star-exoplanet interaction, a magnetosphere with a magnetodisc arises around the magnetized extrasolar planet placed in close orbit about the host star (“Hot Jupiter”). The distance to disc’s inner edge from the center of the host star is a key parameter of the exoplanet magnetospheric model. It determines the disc’s magnetic moment, and as a consequence, the total magnetospheric magnetic field and the character size of the magnetosphere. Here we discuss the exoplanet’s disc inner edge location at R A in a context of other astrophysical discs and emphasize that for definite parameters (existence of a strong magnetic field, for example) a lot of them also have location of their inner edges at the Alfven radii independent of nature of their origin, of the disc’s material, and of the motion direction in the disc, which means that a large class of discs is well described by the MHD theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.K. Abubekerov, and V.M. Lipunov: The lower temperature limit of accretors. Astron. Rep. 47(8), 681–686 (2003)

    Google Scholar 

  2. I.I. Alexeev: The penetration of interplanetary magnetic and electric fields into the magnetosphere. J. Geomag. Geoelectr. 38, 1199–1221 (1986)

    Google Scholar 

  3. I.I Alexeev, and E.S. Belenkaya: Modeling of the jovian magnetosphere. Ann. Geophys. 23, 809–826 (2005)

    Google Scholar 

  4. I.I. Alexeev, V.V. Kalegaev, E.S. Belenkaya, S.Y. Bobrovnikov, E.J. Bunce, S.W.H. Cowley, J.D. Nichols: A global magnetic model of Saturn’s magnetosphere, and a comparison with Cassini SOI data. Geophys. Res. Lett. 33, L08101 (2006). doi:10.1029/2006GL025896

    Google Scholar 

  5. I.I. Alexeev, E.S. Belenkaya, S.Yu. Bobrovnikov, J.A. Slavin, M. Sarantos: Paraboloid model of Mercury’s magnetosphere. J. Geophys. Res. 113, A12210 (2008). doi:10.1029/2008JA013368

    Google Scholar 

  6. H. Alfven, P. Carlqvist: Interstellar clouds and the formation of stars. Astrophys. Space Sci. 55(2), 487–509 (1978)

    Google Scholar 

  7. W. Bednarek: TeV gamma-rays from accreting magnetars in massive binaries. MNRAS. 397, 1420–1425 (2009)

    Google Scholar 

  8. W. Bednarek, J. Pabich: X-rays and γ-rays from cataclysmic variables: the example case of intermediate polar V1223 Sgr, MNRAS. 411, 1701–1706 (2011)

    Google Scholar 

  9. E.S. Belenkaya: The jovian magnetospheric magnetic and electric fields: Effects of the interplanetary magnetic field. Planet. Space Sci. 52, 499–511 (2004)

    Google Scholar 

  10. E.S. Belenkaya, I.I. Alexeev, V.V. Kalegaev, M.S. Blokhina: Definition of Saturn’s magnetospheric model parameters for the Pioneer 11 flyby. Annal. Geophys. 24, 1145–1156 (2006)

    Google Scholar 

  11. E.S. Belenkaya, I.I. Alexeev, M.S. Blokhina, E.J. Bunce, S.W.H. Cowley, J.D. Nichols, V.V. Kalegaev, V.G. Petrov, and G. Provan: IMF dependence of Saturn’s auroras: modelling study of HST and Cassini data from 12–15 February 2008. Ann. Geophys. 28, 1559–1570 (2010)

    Google Scholar 

  12. V. Beskin: Magnetohydrodynamic models of astrophysical jets. PHYS-USP. 53(12), 1241–1278, 2010 (in Russian)

    Google Scholar 

  13. N.G. Bochkarev, A.I. Shapovalova: Variations of geometrical and physical characteristics of innermost regions of active galactic nuclei on time-scale of years. In: Proceedings of the International Astronomical Union, 2, 327–328 (2006)

    Google Scholar 

  14. N.G. Bochkarev, C.M. Gaskell: The accuracy of supermassive black hole masses determined by the single-epoch spectrum (Dibai) method. Astron. Lett. 355, 287–293, 2009

    Google Scholar 

  15. M. Camenzind: In: Compact objects in astrophysics: White dwarfs, neutron stars and black holes, Astronomy and astrophysics library, ed. by G. Brner, A. Burkert, W. B. Burton, et al. Springer, Berlin Heidelberg New York (2007)

    Google Scholar 

  16. K.S. Cheng, K.N. Yu, K.Y. Ding: X-ray and gamma-ray emission from active galactic nuclei. Astron. Astrophys. 275 No. 1/AUG(I), 53–60 (1993)

    Google Scholar 

  17. A.M. Cherepashchuk: Highly evolved close binary stars. Space Sci. Rev. 74(3–4), 313–324 (1995)

    Google Scholar 

  18. A.M. Cherepashchuk: X-ray nova binary systems. Space Sci. Rev. 93(3–4), 473–580 (2000)

    Google Scholar 

  19. A.M. Cherepashchuk: Observational manifestations of precession of accretion disk in the SS 43 binary system. Space Sci. Rev. 102(1–4), 23–35 (2002)

    Google Scholar 

  20. A.M. Cherepashchuk: Search for blackholes. PHYS-USP, 46, 335–371 (2003)

    Google Scholar 

  21. K. Y. Eksi, M. Ali Alpar: Disks surviving the radiation pressure. Astrophys. J. 620, 390–397 (2005). doi: 10.1086/425959

    Google Scholar 

  22. C. Fendt, J. Greiner: Magnetically driven superluminal motion from rotating black holes Solution of the magnetic wind equation in Kerr metric. Astron. Astrophys. 369, 308–322 (2001)

    Google Scholar 

  23. J. Frank, A.R. King, D. Raine: Accretion power in astrophysics. Cambridge Univ. Press. Cambridge (1992)

    Google Scholar 

  24. Ghosh P., Lamb F. K: Accretion by rotating magnetic neutron stars. II - Radial and vertical structure of the transition zone in disk. Astrop. J. 232, 259–276, (1979a)

    Google Scholar 

  25. Ghosh P., Lamb F.K.: Accretion by rotating magnetic neutron stars. III - Accretion torques and period changes in pulsating X-ray sources. Astrop. J. 234, 296–316 (1979b)

    Google Scholar 

  26. Ginzburg, V.L.: On physics and astrophysics, Bureau Quantum, Moscow (1995)

    Google Scholar 

  27. Khodachenko, M.L., I. Alexeev, E. Belenkaya, H. Lammer, J.-M. Griessmeier, M. Leitzinger, P. Odert, T. Zaqarashvili, and H. O. Rucker: Magnetospheres of ∖Hot Jupiters”: The importance of magnetodisks for shaping of magnetospheric obstacle. In press (2011)

    Google Scholar 

  28. Kuperus, M.: Magnetohydrodynamics of accretion disks, Computer Physics Reports 12, No 4, 275–287 (1990)

    Google Scholar 

  29. Levine, D.A., D.F. Figer, M. Morris, and I.S. McLean: A circumstellar H2O maser associated with the circumnuclear molecular disk at the Galactic Center? Astrop. J. 447, L101–L104 (1995)

    Google Scholar 

  30. Livio, M.: Astrophysical jets: a phenomenological examination. Phys. Rep. 311, 225–245 (1999)

    Google Scholar 

  31. Shakura, N.I., and R.A. Sunyaev: Black holes in binary systems. Observational appearence. Astron. Astrophys. 24 337–355 (1973)

    Google Scholar 

  32. Suzuki, T.K.: Self-consistent simulations of Alfven waves driven winds from the Sun and stars. Space Sci. Rev. 158, 339–363 (2011)

    Google Scholar 

  33. Tomsick John A., Kazutaka Yamaoka, Stephane Corbel, Philip Kaaret, Emrah Kalemci and Simone Migliari: Astrop. J. 707, L87–L91 (2009)

    Google Scholar 

  34. Wang Y.-M.: Location of the inner radius of a magnetically threaded accreation disk. Astrop. J. 465, L111–L113 (1996)

    Google Scholar 

  35. Zeldovich, Ya. B., Novikov, I.D.: The theory of the gravitation and stars evolution. Nauka. Moskow (1971)

    Google Scholar 

  36. Zhang, D and Z. G. Dai: Hyperaccreting discs around magnetars for gamma-ray bursts: Effects of strong magnetic fields. Astrop. J. 718, No 2, (2010) doi: 10.1088/0004-637X/718/2/841

    Google Scholar 

  37. Zhao, X.P., and J.T. Hoeksema: The Magnetic Field at the Inner Boundary of the Heliosphere Around Solar Minimum. Solar Phys. 266, 379–390 (2010) doi 10.1007/s11207-010-9618-0

    Google Scholar 

Download references

Acknowledgements

Work at the Institute of Nuclear Physics, Moscow State University was supported by the RFBR Grants No 11-05-00894 and 09-05-00798. The authors are thankful to EU FP7 projects EUROPLANET/JRA3 and IMPEX for support of their collaboration. This work was partially supported by the Austrian Science Fund (FWF) within the project P21197-N16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena S. Belenkaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Belenkaya, E.S., Alexeev, I.I., Khodachenko, M.L. (2012). Location of the Inner Edges of Astrophysical Discs Related to the Central Object. In: Leubner, M., Vörös, Z. (eds) Multi-scale Dynamical Processes in Space and Astrophysical Plasmas. Astrophysics and Space Science Proceedings, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30442-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30442-2_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30441-5

  • Online ISBN: 978-3-642-30442-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics