Skip to main content
Log in

Phytoavailability and toxicity of beryllium and vanadium

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Greenhouse and laboratory studies were conducted to evaluate the toxic effects of Be and V on collards (Brassica oleracea, var. acephala L.). In the laboratory germination study, incremental increases in the Be concentrations of the growing medium induced a steady decline in the radicle length of seven-day-old collard seedling. Beryllium concentrations greater than or equal to 8 mg Be L−1 totally inhibited seed germination. The presence of V in the growing medium had no effect on collard germination; however, it had a profound effect on subsequent radicle elongation. Concentrations of V less than 1 mg V L−1 stimulated radicle elongation, while concentrations greater than or equal to 3 mg V L−1 caused severe toxicity. In the greenhouse study, Be toxicity was observed in collards grown in a Blanton sand (Grossarenic Paleudult) received treatments greater than or equal to 150 mg Be kg −1 (as BeSO4). Irrespective of treatment level, 97% of the Be taken up by the plants remained in the roots while only 3% was translocated to aboveground plant parts. Vanadium tissue concentrations and toxicity to collards varied with soil type. Additions as low as 80 mg V kg−1 to the Blanton sand significantly reduced collard biomass while additions as high as 100 mg V kg−1 to an Orangebury loamy sand (Typic Paleudult) had no effect on plant biomass. The differential response was attributed to greater accumulation of V by plants grown in the Blanton soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamu, C. A., Bell, P. F., Mulchi, C., and Chaney, R.: 1989, Environ. Pollut. 56, 113.

    Google Scholar 

  • Adriano, D. C.: 1986, in Trace Elements in the Terrestrial Environment, Springer-Verlag, Inc. New York, p. 470.

    Google Scholar 

  • Alley, M. M., Martens, D. C., Schnappinger, Jr., M. G., and Hawkins, G. W.: 1972. Soil Sci. Soc. Am. Proc. 36, 621.

    Google Scholar 

  • Arnon, D. I. and Wessell, G.: 1953, Nature 172, 1039.

    Google Scholar 

  • Barbarick, K. A. and Workman, S. M.: 1987, J. Environ. Qual. 16, 125.

    Google Scholar 

  • Basiouny, F. M.: 1984, J. Plant Nutr. 7, 1059.

    Google Scholar 

  • Baxter, J. C., Aguilar, M., and Brown, K.: 1983, J. Environ. Qual. 12, 311.

    Google Scholar 

  • Brosset, C. 1976, Ambio 5, 157–163.

    Google Scholar 

  • Cannon, H. L.: 1963, Soil Sci. 96, 196.

    Google Scholar 

  • Carlson, C. L., Kaplan, D. I., and Adriano, D. C.: 1989, Environ. Exp. Bot. 29, 493.

    Google Scholar 

  • Council on Soil Testing and Plant Analysis: 1980, Handbook on reference Methods for Soil Testing, Univ. of Georgia, Athens, GA, p. 231.

    Google Scholar 

  • Hopkins, L. L. and Mohr, H. E.: 1974, Fed. Proc. 33, 1773.

    Google Scholar 

  • Jones, Jr., J. B.: 1988, Soil Testing and Plant Analysis: Procedures and Use. Food and Fertilizer Technology Center. Tech. Bull. Univ. Georgia. No. 109.

  • Kabata-Pendias, A. and Pendias, H.: 1984, Trace Elements in Soils and Plants, CRC Press Inc. Boca Raton, FL.

    Google Scholar 

  • Kaplan, D. I., Adriano, D. C., Carlson, C. L., and Sajwan, K. S.: 1990, Water, Air and Soil Pollut. 49, 81.

    Google Scholar 

  • Korte, N. E., Skopp, J., Fuller, W. H., Niebla, E. E., and Alesii, B. A.: 1976, Soil Sci. 122, 350.

    Google Scholar 

  • Lepp, N. W.: 1977, Z Pflanzen. Bd. 83, 185.

    Google Scholar 

  • Lindsay, W. L. and Norvell, W. A.: 1978, Soil Sci. Soc. Am. J. 24, 421.

    Google Scholar 

  • Mehlich, A.: 1984, Commun. Soil Sci. Plants Anal. 15, 1409.

    Google Scholar 

  • Nicholas, D. J. D.: 1975, ‘The Functions of Trace Elements in Plants’, in D. J. D. Nicholas, and A. R. Egan (ed.), Trace Elements in Soil-Plant-animal Systems, Academic Press, New York, p. 181.

    Google Scholar 

  • O'Connor, G. A.: 1988, J. Environ. Qual. 17, 715.

    Google Scholar 

  • Peterson, P. J. and Girling, C. A.: 1981, ‘Other Trace Metals’, in N. W. Lepp (ed.), Effect of Heavy Metal Pollution on Plants. Vol. 1: Effects of Trace Metals on Plant Function, Applied Science Publ., London, p. 212.

    Google Scholar 

  • Puerner, N. J. and Siegel, S. M.: 1972, Physiol. Plant 26, 310.

    Google Scholar 

  • Romney, E. M. and Childress, J. D.: 1965, Soil Sci. 100, 210.

    Google Scholar 

  • Silviera, D. J. and Sommers, L. E.: 1977, J. Environ. Qual. 6, 47.

    Google Scholar 

  • Street, J. J., Lindsay, W. L., and Sabey, B. R.: 1977, J. Environ. Qual. 6, 72.

    Google Scholar 

  • Weiguo, Q.: 1983, Anal. Chem. 55, 2043.

    Google Scholar 

  • Williams, R. J. B. and Le Riche, H. H.: 1968, Plant Soil 29, 317.

    Google Scholar 

  • Zenz, C.: 1980, ‘Vanadium’, in H. A. Waldron (ed.), Metals in the Environment, Academic Press, New York, p. 293.

    Google Scholar 

  • Zoller, W. H., Gladney, E. S., Gordon, G. E., and Bors, J. J.: 1974, Trace Subs. Environ. Health 8, 167.

    Google Scholar 

  • Zubovic, P.: 1969, ‘Coal Emissions of Beryllium’, in Proc. of Beryllium Conference, MIT, Cambridge, Mass., U.S.A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Author for all correspondence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplan, D.I., Sajwan, K.S., Adriano, D.C. et al. Phytoavailability and toxicity of beryllium and vanadium. Water Air Soil Pollut 53, 203–212 (1990). https://doi.org/10.1007/BF00170737

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00170737

Keywords

Navigation