Skip to main content

Advertisement

Log in

Assessing biochar ecotoxicology for soil amendment by root phytotoxicity bioassays

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil amendment with biochar has been proposed as effective in improving agricultural land fertility and carbon sequestration, although the characterisation and certification of biochar quality are still crucial for widespread acceptance for agronomic purposes. We describe here the effects of four biochars (conifer and poplar wood, grape marc, wheat straw) at increasing application rates (0.5, 1, 2, 5, 10, 20, 50 % w/w) on both germination and root elongation of Cucumis sativus L., Lepidium sativum L. and Sorghum saccharatum Moench. The tested biochars varied in chemical properties, depending on the type and quality of the initial feedstock batch, polycyclic aromatic hydrocarbons (PAHs) being high in conifer and wheat straw, Cd in poplar and Cu in grape marc. We demonstrate that electrical conductivity and Cu negatively affected both germination and root elongation at ≥5 % rate biochar, together with Zn at ≥10 % and elevated pH at ≥20 %. In all species, germination was less sensitive than root elongation, strongly decreasing at very high rates of chars from grape marc (>10 %) and wheat straw (>50 %), whereas root length was already affected at 0.5 % of conifer and poplar in cucumber and sorghum, with marked impairment in all chars at >5 %. As a general interpretation, we propose here logarithmic model for robust root phytotoxicity in sorghum, based on biochar Zn content, which explains 66 % of variability over the whole dosage range tested. We conclude that metal contamination is a crucial quality parameter for biochar safety, and that root elongation represents a stable test for assessing phytotoxicity at recommended in-field amendment rates (<1–2 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anjum, N. A., Ahmad, I., Pereira, M. E., Duarte, A. C., Umar, S., & Khan, N. A. (2012). The plant family Brassicaceae: contribution towards phytoremediation. Dordrecht, Heidelberg, New York, London: Springer.

    Book  Google Scholar 

  • Beesley, L., Moreno-Jiménez, E., & Gomez-Eyles, J. L. (2010). Effects of biochar and green waste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution, 158, 2282–2287.

    Article  CAS  Google Scholar 

  • Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159, 3269–3282.

    Article  CAS  Google Scholar 

  • Brennan, A., Moreno-Jiménez, E., Alburquerque, J. A., Knapp, C. W., & Switzer, C. (2014a). Effects of biochar and activated carbon amendment on maize growth and the uptake and measured availability of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs). Environmental Pollution, 193, 79–87.

    Article  CAS  Google Scholar 

  • Brennan, A., Moreno-Jiménez, E., Puschenreiter, M., Alburquerque, J. A., & Switzer, C. (2014b). Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil. Plant and Soil, 379, 351–360.

    Article  CAS  Google Scholar 

  • Calinski, R. B., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics, 3, 1–27.

    Article  Google Scholar 

  • Calvelo Pereira, R., Monterroso, C., & Macías, F. (2010). Phytotoxicity of hexachlorocyclohexane: effect on germination and early growth of different plant species. Chemosphere, 79, 326–333.

    Article  CAS  Google Scholar 

  • Cao, X., Ma, L., Liang, Y., Gao, B., & Harris, W. (2011). Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environmental Science and Technology, 45, 4884–4889.

    Article  CAS  Google Scholar 

  • Chan, K., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2007). Agronomic values of green waste biochar as soil amendment. Soil Research, 45, 629–634.

    Article  CAS  Google Scholar 

  • Chigbo, C., & Batty, L. (2013). Effect of combined pollution of chromium and benzo(a)pyrene on seed growth of Lolium perenne. Chemosphere, 90, 164–169.

    Article  CAS  Google Scholar 

  • Core Team, R. (2013). R: a language and environment of statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Dunnet, C. W. (1955). A multiple comparison procedure for comparing several treatments with a control. Journal of the American Statistical Association, 50, 1096–1121.

    Article  Google Scholar 

  • EPA (United States Environmental Protection Agency) (2008). Polycyclic aromatic hydrocarbons (PAHs). Office of Solid Waste, Washington DC 20460

  • Freddo, A., Cai, C., & Reid, B. J. (2012). Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar. Environmental Pollution, 171, 18–24.

    Article  CAS  Google Scholar 

  • Hale, S. E., Hanley, K., Lehmann, J., Zimmerman, A., & Cornelissen, G. (2011). Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar. Environmental Science and Technology, 45, 10445–10453.7.

    Article  CAS  Google Scholar 

  • Halušková, L., Valentovičová, K., Huttová, J., Mistrík, I., & Tamás, L. (2010). Effect of heavy metals on root growth and peroxidase activity in barley root tips. Acta Physiologiae Plantarum, 32, 59–65.

    Article  Google Scholar 

  • Jeffery, S., Verheijen, F. G. A., van der Velde, M., & Bastos, A. C. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture Ecosystem and Environment, 144, 175–187.

    Article  Google Scholar 

  • Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M. A., & Sonoki, T. (2014). Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences, 11, 6613–6621.

    Article  Google Scholar 

  • Kamara, A., Mankutu Mansaray, M., Kamara, A., & Sawyerr, P. A. (2014). Efffects of biochar derived from maize stover and rice straw on the early growth of their seedlings. American Journal of Agriculture and Forestry, 2, 232–236.

    Article  Google Scholar 

  • Kuśmierz, M., & Oleszczuk, P. (2014). Biochar production increases the polycyclic aromatic hydrocarbon content in surrounding soils and potential cancer risk. Environmental Science and Pollution Research, 21, 3646–3652.

    Article  Google Scholar 

  • Laird, D. A. (2008). The charcoal vision: a win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal, 100, 178–181.

    Article  Google Scholar 

  • Lehmann, J. (2007). A handful of carbon. Nature, 447, 143–144.

    Article  CAS  Google Scholar 

  • Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: science and technologies. London, UK: Earthscan.

    Google Scholar 

  • Lehmann, J., Rilling, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2011). Biochar effects on soil biota—a review. Soil Biology and Biochemistry, 43, 1812–1836.

    Article  CAS  Google Scholar 

  • Li, Y., Shen, F., Guo, H., Wang, Z., Yang, G., Wang, L., Zhang, Y., Zeng, Y., & Deng, S. (2015). Phytotoxicity assessment on corn stover biochar, derived from fast pyrolysis, based on seed germination, early growth, and potential plant cell damage. Environmental Science and Pollution Research, 22, 9534–9543.

    Article  CAS  Google Scholar 

  • Lin, D., & Xing, B. (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution, 150, 243–250.

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norwel, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, 421–428.

    Article  CAS  Google Scholar 

  • Lucchini, P., Quilliam, R. S., DeLuca, T. H., Vamerali, T., & Jones, D. L. (2014). Increased bioavailability of metals in two contrasting agricultural soils treated with waste wood-derived biochar and ash. Environmental Science and Pollution Research, 21, 3230–3240.

    Article  CAS  Google Scholar 

  • Maila, M. P., & Cloete, T. E. (2002). Germination of Lepidium sativum as a method to evaluate polycyclic aromatic hydrocarbons (PAHs) removal from contaminated soils. International Biodeterioration and Biodegradation, 50, 107–113.

    Article  CAS  Google Scholar 

  • Mukherjee, A., & Lal, R. (2014). The biochar dilemma. Soil Research, 52, 217–230.

    Article  CAS  Google Scholar 

  • OECD (1984). Terrestrial plants: growth test. OECD Guidelines for Testing of Chemicals, Paris: N° 208.

  • Oleszczuk, P., Jośko, I., & Kuśmierz. (2013). Biochar properties regarding contaminant content and ecotoxicological assessment. Journal of Hazardous Materials, 260, 375–382.

    Article  CAS  Google Scholar 

  • Oleszczuk, P., Rycaj, M., Lehmann, J., & Cornelissen, G. (2012). Influence of activated carbon and biochar on phytotoxicity of air-dried sewage sludges to Lepidium sativum. Ecotoxicology and Environmental Safety, 80, 321–326.

    Article  CAS  Google Scholar 

  • Pituello, C., Francioso, O., Simonetti, G., Pisi, A., Torreggiani, A., Berti, A., & Morari, F. (2014). Characterization of chemical–physical, structural and morphological properties of biochars from biowastes produced at different temperatures. Journal of Soils and Sediments, 15(4), 792–804.

    Article  Google Scholar 

  • Quilliam, R. S., Rangercroft, S., Emmett, B. A., Deluca, T. H., & Jones, D. L. (2013). Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils? Global Change Biology Bioenergy, 5, 96–103.

    Article  CAS  Google Scholar 

  • Ritz, C., & Streibig, J. C. (2005). Bioassay analysis using R. Journal of Statisical Software, 12(5), 1–22.

    Google Scholar 

  • Rogovska, N., Laird, D., Cruse, R. M., Trabue, S., & Heaton, E. (2012). Germination tests for assessing biochar quality. Journal of Environmental Quality, 41, 1–9.

    Article  Google Scholar 

  • Sharma, R. K., & Hajaligol, M. R. (2003). Effect of pyrolysis conditions on the formation of polycyclic aromatic hydrocarbons (PAHs) from polyphenolic compounds. Journal of Analytical and Applied Pyrolysis, 66, 123–144.

    Article  CAS  Google Scholar 

  • Solaiman, Z. M., Murphy, D. V., & Abbott, L. K. (2012). Biochars influence seed germination and early growth of seedlings. Plant and Soil, 353, 273–287.

    Article  CAS  Google Scholar 

  • Spokas, K. A. (2010). Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Mang., 1(2), 289–303.

    Article  CAS  Google Scholar 

  • Sun, L., Liao, X., Yan, X., Zhu, G., & Ma, D. (2014). Evaluation of heavy metal and polycyclic aromatic hydrocarbons accumulation in plants from typical industrial sites: potential candidate in phytoremediation for co-contamination. Environmental Science and Pollution Research, 21, 12494–12504.

    Article  CAS  Google Scholar 

  • Vamerali, T., Bandiera, M., Lucchini, P., Dickinson, N. M., & Mosca, G. (2014). Long-term phytomanagement of metal-contaminated land with field crops: integrated remediation and biofortification. European Journal of Agronomy, 53, 56–66.

    Article  CAS  Google Scholar 

  • Verheijen, F., Jeffery, S., Bastos, A.C., van der Velde, M. & Diafas, I. (2010). Biochar application to soils: a critical review of effects on soil properties, processes and functions. EUR240099EN.

  • Wang, X., Sun, C., Gao, S., Wang, L., & Shuokui, H. (2001). Validation of germination rate and root elongation as indicator to assess phytotoxicity in Cucumis sativus. Chemosphere, 44, 1711–1721.

    Article  CAS  Google Scholar 

  • Zhan, X. H., Ma, H. L., Zhou, I. X., Liang, J. R., Liang, T. H., & Xu, G. H. (2010). Accumulation of phenanthrene by roots of intact wheat (Triticum aestivum L.) seedlings: passive or active uptake? BMC Plant Biology, 10, 52–60.

    Article  Google Scholar 

  • Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., Bolan, N. S., Pei, J., & Huang, H. (2013). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research, 20, 8472–8483.

    Article  CAS  Google Scholar 

  • Zheng, W., Guo, M., Ghow, T., Bennet, D. N., & Rajagopalan, N. (2010). Sorption properties of green waste biochar for two triazine pesticides. Journal of Hazardous Materials, 181, 121–126.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Visioli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Visioli, G., Conti, F.D., Menta, C. et al. Assessing biochar ecotoxicology for soil amendment by root phytotoxicity bioassays. Environ Monit Assess 188, 166 (2016). https://doi.org/10.1007/s10661-016-5173-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5173-y

Keywords

Navigation