Skip to main content
Log in

Two different IFN-γ nonresponsive variants derived from the B-cell lymphoma 70Z/3

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The kappa immunoglobulin (Igk) light chain locus is transcriptionally silent in the mouse B-cell lymphoma 70Z/3. However, exposure to lipopolysaccharide (LPS) or interferon-γ (IFN) causes a marked increase in Igk transcription. By immunoselection, we isolated two variants that are nonresponsive to IFN. One variant, AT7.2, has retained its response to LPS (IFN-LPS+), whereas the other, AT3.3, is also nonresponsive to LPS (IFN-LPS). Stable transfection of an intact Igk gene does not rescue the phenotype of either variant. Both variants have intact Igk genes and neither is deficient in the binding or uptake of IFN. Nuclear extracts from LPS-treated wild-type 70Z/3 cells show strong increases in three transcription factors: OTF-2, NF-κB, and kBF-A. Remarkably, when the IFN-LPS variant is treated with LPS, all three transcription factors are still observed in the nuclear extracts. Treatment of wild-type cells with either LPS or IFN also causes a decrease in nuclear complexes that bind to two other regions of the Igk intron enhancer, the octenh and the EκMHCIC regions. Both of these changes are also observed after LPS or IFN treatment of the IFN-LPS variant. Thus, this variant transduces the IFN and LPS signals at least into the nuclear compartment, but still fails to activate Igk transcription. In contrast, the IFN-LPS+ variant decreases neither the octenh nor the EκMHCIC binding complexes in response to IFN. This variant may be defective in transducing the IFN signal to the nucleus. These variants will be useful in studying the activation of Igk transcription and the IFN signaling pathway in B cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnosti, D. N., Merino, A., Reinberg, D., and Schaffner, W. Oct-2 facilitates functional preinitiation complex assembly and is continuously required at the promoter for multiple rounds of transcription. EMBO J 12: 157–166, 1993

    Google Scholar 

  • Baeuerle, P. A. and Baltimore D. IκB: a specific inhibitor of the NF-κB transcription factor. Science 242: 540–546, 1988

    Google Scholar 

  • Bomsztyk, K., Rooney, J. W., Iwasaki, T., Rachie, N. A., Dower, S. K., and Sibley, C. H. Evidence that interleukin-1 and phorbol esters activate NF-κB by different pathways: role of protein kinase C. Cell Regul 2: 329–335, 1991

    Google Scholar 

  • Bomsztyk, K., Stanton, T. H., Smith, L. L., Rachie, N. A., and Dower, S. K. Properties of interleukin-1 and interferon-γ receptors in B lymphoid cell line. J Biol Chem 264: 6052–6057, 1989

    Google Scholar 

  • Briskin, M., Kuwabara, M. D., Sigman, D. S., and Wall, R. Induction of κ transcription by interferon-γ without activation of NF-κB. Science 242: 1036–1037, 1988

    Google Scholar 

  • Chomczynski, P. and Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156–159, 1987

    Google Scholar 

  • Currie, R. A. and Roeder, R. G. Identification of an octamer-binding site in the mouse kappa light-chain immunoglobulin enhancer. Mol Cell Biol 9: 4239–4247, 1989

    Google Scholar 

  • Decker, T., Lew, D. J., Mirkovitch, J., and Darnell, J. E. Cytoplasmic activation of GAF, and IFN-γ-regulated DNA-binding factor. EMBO J 10: 927–932, 1991

    Google Scholar 

  • Eades, A. M., Litfin, M., and Rahmsdorf, H. J. The IFN-gamma response of the murine invariant chain gene is mediated by a complex enhancer that includes several MHC class II consensus elements. J Immunol 144: 4399–4409, 1990

    Google Scholar 

  • Emery, D. Regulation of expression of the immunoglobulin genes mu and kappa. Doctoral Thesis, University of Washington 1: 1–150, 1989

    Google Scholar 

  • Emery, D. W., Rooney, J. W., and Sibley, C. H. A γ interferon-non-responsive variant of cell line 70Z/3, IFN-4, can be partially rescued by phorbol myristate acetate. Mol Cell Biol 9: 5231–5233, 1989

    Google Scholar 

  • Falkner, F. G. and Zachau, H. G. Correct transcription of an immunoglobulin k gene requires an upstream fragment containing conserved sequence elements. Nature 310: 71–74, 1984

    Google Scholar 

  • Friedman, R. L., Manly, S. P., McMahon, M., Kerr, L. M., and Stark, G. R. Transcriptional and post-transcriptional regulation of interferon-induced gene expression in human cells. Cell 38: 745–755, 1984

    Google Scholar 

  • Hannigan, G. and Williams, B. R. Transcriptional regulation of interferon-responsive genes is closely linked to interferon receptor. EMBO J 5: 1607–1613, 1986

    Google Scholar 

  • Harvey, R. P., Robins, A. J., and Wells, J. R. Independently evolving chicken histone H2B genes: identification of a ubiquitous H2B-specific 5′ element. Nucleic Acids Res 10: 7851–7863, 1982

    Google Scholar 

  • Johnson, D. G., Carayannopoulos, L., Capra, J. D., Tucker, P. W., and Hanke, J. H. The ubiquitous octamer-binding protein(s) is sufficient for transcription of immunoglobulin genes. Mol Cell Biol 10: 982–990, 1990

    Google Scholar 

  • Joho, R., Weissman, I. L., Early, P., Cole, J., and Hood, L. Organization of k light chain genes in germ-line and somatic tissue. Proc Natl Acad Sci USA 77: 1106–1110, 1980

    Google Scholar 

  • Kara, C. J. and Glimcher, L. H. Developmental and cytokine-mediated regulation of the MHC class II gene promoter occupancy in vivo. J Immunol 150: 4934–4942, 1993

    Google Scholar 

  • Kemler, I., Schreiber, E., Muller, M. M., Matthias, P., and Schaffner, W. Octamer transcription factors bind to two different sequence motifs of the immunoglobulin heavy chain promoter. EMBO J 8: 2001–2008, 1989

    Google Scholar 

  • Langer, J. A., Rashidbaigi, A., and Pestka, S. Preparation of 32P-labeled murine immune interferon and its binding to the mouse immune interferon receptor. J Biol Chem 261: 9801–9804, 1986

    Google Scholar 

  • Lenardo, M., Pierce, J. W., and Baltimore, D. Protein binding sites in immunoglobulin gene enhancers determine transcriptional activity and inducibility. Science 236: 1573–1577, 1987

    Google Scholar 

  • Lenardo, M. J. and Baltimore, D. NF-κB: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58: 227–229, 1989

    Google Scholar 

  • Lew, D. J., Decker, T., Strehlow, I., and Darnell, J. E. Overlapping elements in the guanylate-binding protein gene promoter mediate transcriptional induction by α and γ interferon. Mol Cell Biol 11: 182–191, 1991

    Google Scholar 

  • Luo, Y., Fujii, H., Gerster, T., and Roeder, R. G. A novel B cell-derived coactivator potentiates the activation of immunoglobulin promoters by octamer-binding transcription factors. Cell 71: 231–241, 1992

    Google Scholar 

  • MacDonald, R. I., Swift, G. H., Przybyla, A. E., and Chirgwin, J. M. Isolation of RNA using guanidinium salts. Methods Enzymol 152: 219–227, 1987

    Google Scholar 

  • Mains, P. E. and Sibley, C. H. LPS-nonresponsive variants of mouse B-cell lymphoma, 70Z/3: isolation and characterization. Som Cell Mol Genet 9: 699–720, 1983

    Google Scholar 

  • Maki, R., Kearney, J., Paige, C., and Tonegawa, S. Immunoglobulin gene rearrangement in immature B-cells. Science 209: 1366–1369, 1980

    Google Scholar 

  • Meyer, K. B., Sharpe, M. J., Surani, M. A., and Neuberger, M. S. The importance of the 3′-enhancer region in immunoglobulin kappa gene expression. Nucleic Acids Res 18: 5609–5615, 1990

    Google Scholar 

  • Miller, C. L., Feldhaus, A. L., Rooney, J. W., Rhodes, L. D., Sibley, C. H., and Singh, H. Regulation and a possible stage-specific function of Oct-2 during pre-B-cell differentiation. Mol Cell Biol 11: 4885–4894, 1991

    Google Scholar 

  • Müller, M. M., Ruppert, S., Schaffner, W., and Matthias, P. A cloned octamer transcription factor stimulated transcription from lymphoid-specific promoters in non-B-cells. Nature 336: 544–551, 1988

    Google Scholar 

  • Nelms, K., Hromas, R., and Van Ness, B. V. Identification of a second inducible DNA-protein interaction in the k immunoglobulin enhancer. Nucleic Acids Res 18: 1037–1943, 1990

    Google Scholar 

  • Nelson, K. J., Mather, E. L., and Perry, R. P. Lipopolysaccharide-induced transcription of the kappa immunoglobulin locus occurs on both alleles and is independent of methylation status. Nucleic Acids Res 12: 1911–1923, 1984

    Google Scholar 

  • Paige, C. J., Kincade, P. W., and Ralph, P. Murine B cell leukemia line with inducible surface immunoglobulin expression. J Immunol 121: 641–647, 1978

    Google Scholar 

  • Parslow, T. G., Blair, D. L., Murphy, W. J., and Granner, D. K. Structure of the 5′ ends of immunoglobulin genes: a novel conserved sequence. Proc Natl Acad Sci USA 81: 2650–2654, 1984

    Google Scholar 

  • Perry, R. P. and Kelley, D. E. Immunoglobulin messenger RNAs in murine cell lines that have characteristics of immature B lymphocytes. Cell 18: 1333–1339, 1979

    Google Scholar 

  • Picard, D. and Schaffner, W. Cell-type preference of immunoglobulin kappa and lambda gene promoters. EMBO J 4: 2831–2838, 1985

    Google Scholar 

  • Pierani, A., Heguy, A., Fujii, H., and Roeder, R. G. Activation of octamer-containing promoters by either octamer-binding transcription factor 1 (OTF-1) or OTF-2 and requirement of an additional B-cell-specific component for optimal transcription of immunoglobulin promoters. Mol Cell Biol 10: 6204–6215, 1990

    Google Scholar 

  • Rooney, J. W., Emery, D. W., and Sibley, C. H. 1.3E2, a variant of the B lymphoma 70Z/3, defective in activation of NF-κB and OTF-2. Immunogenetics 31: 73–78, 1990a

    Google Scholar 

  • Rooney, J. W., Emery, D. W., and Sibley, C. H. Slow response variant of the B lymphoma 70Z/3 defective in LPS activation of NF-κB. Immunogenetics 31: 65–72, 1990b

    Google Scholar 

  • Sambrook, J., Fritsch, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd edn, Cold Spring Harbor Laboratory, Cold Spring Harbor, 1989

    Google Scholar 

  • Schreiber, E., Harshman, K., Kemler, I., Malipiero, U., and Schaffner, W. Astrocytes and glioblastoma cells express novel octamer-DNA binding proteins distinct from the ubiquitous Oct-I and B cell type Oct-2 proteins. Nucleic Acids Res 18: 5495–5503, 1990

    Google Scholar 

  • Sen, R. and Baltimore, D. Inducibility of k immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell 47: 921–928, 1986

    Google Scholar 

  • Shaw, A. R., Chan, J. K., Reid, S., and Seehafer, J. HLA-DR synthesis induction and expression in HLA-DR-negative carcinoma cell lines of diverse origins by interferon-gamma but not interferon-beta. J Natl Cancer Inst 74: 1261–1268, 1985

    Google Scholar 

  • Sherman, P. A., Basta, P. V., Heguy, A., Wloch, M. K., Roeder, R. G., and Ting, J. P. The octamer motif is a β-lymphocyte-specific regulatory element of the HLA-DR alpha gene promoter. Proc Natl Acad Sci USA 86: 6739–6743, 1989

    Google Scholar 

  • Shuai, K., Schindler, C., Prezioso, V. R., and Darnell, J. E. Activation of transcription by IFN-gamma: tyrosine phosphorylation of a 91-kD DNA binding protein. Science 258: 1808–1812, 1992

    Google Scholar 

  • Southern, P. J. and Berg, P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet 1: 327–341, 1982

    Google Scholar 

  • Staudt, L. M., Clerc, R. G., Singh, H., LeBowitz, J. H., Sharp, P. A., and Baltimore, D. Cloning of a lymphoid-specific cDNA encoding a protein binding the regulatory octamer DNA motif. Science 241: 577–580, 1988

    Google Scholar 

  • Staudt, L. M., Singh, H., Sen, R., Wirth, T., Sharp, P. A., and Baltimore, D. A lymphoid specific protein binding to the octamer motif of immunoglobulin genes. Nature 323: 640–643, 1986

    Google Scholar 

  • Weeks, R. S. and Sibley, C. H. Molecular analysis of immunoglobulin expression in variants of murine B lymphoma, 70Z/3. Som Cell Mol Genet 13: 205–219, 1987

    Google Scholar 

  • Weeks, R. S. and Sibley, C. H. Inducible expression of transfected k light chains by lipopolysaccharide and IFN-γ in the murine B lymphoma, 70Z/3. J Immunol 140: 1312–1320, 1988

    Google Scholar 

  • Wirth, T., Staudt, L., and Baltimore, D. An octamer oligonucleotide upstream of a TATA motif is sufficient for lymphoid-specific promoter activity. Nature 329: 174–177, 1987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhodes, L.D., Paull, A.T. & Sibley, C.H. Two different IFN-γ nonresponsive variants derived from the B-cell lymphoma 70Z/3. Immunogenetics 40, 199–209 (1994). https://doi.org/10.1007/BF00167080

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00167080

Keywords

Navigation