Skip to main content

Advertisement

Log in

Efficient expression of tum antigen P91A by transfected subgenic fragments

  • Original articles
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Mutagen treatment of mouse P815 tumor cells produces immunogenic mutants that express new transplantation antigens (tum antigens) recognized by cytolytic T cells. The gene encoding tum antigen P91A comprises 12 exons and a mutation located in exon 4 is responsible for the production of a new antigenic peptide. Transfection experiments showed that the expression of the antigen could be transferred not only by the entire gene but also by gene segments comprising only the mutated exon and parts of the surrounding introns. This was observed with subgenic regions that were not cloned in expression vectors. Antigen expression did not require the integration of the transfected gene segment into a resident P91A gene by homologous recombination. It also occurred when the subgenic segment was transfected without the usual selective gene, which comprises an eucaryotic promoter, and also without plasmid sequences, which are known to contain weak promoters. When a stop codon was introduced at the beginning of exon 4, the expression of the antigen was maintained and evidence was obtained that an ATG codon located in this region served as initiation site for the translation of the antigenic peptide. But we have not obtained evidence indicating that antigenic peptides are direct translation products rather than degradation products of entire proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, P. M., Strydom, D., and Unanue, E.R.: Processing of lysozyme by macrophages: identification of the determinant recognized by two T cell hybridomas. Proc Natl Acad Sci USA 81: 2489–2493, 1984

    Google Scholar 

  • Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K.: Current Protocols in Molecular Biology. J. Wiley, New York, 1987

    Google Scholar 

  • Boon, T. and Van Pel, A.: T cell recognized antigenic peptides derived from the cellular genome are not protein degradation products but can be generated directly by transcription and translation of short subgenic regions. A hypothesis. Immunogenetics 29: 75–79, 1988

    Google Scholar 

  • Boon, T., Van Snick, J., Van Pel, A., Uyttenhove, C., and Marchand, M.: Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. II. T lymphocyte-mediated cytolysis. J Exp Med 152: 1184–1193, 1980

    Google Scholar 

  • Chimini, G., Pala, P., Sire, J., Jordan, B. R., and Maryanski, J. L.: Recognition of oligonucleotide-encoded T cell epitopes introduced into a gene unrelated to the original antigen. J Exp Med 169: 297–302, 1989

    Google Scholar 

  • Colbere-Garapin, F., Chousterman, S., Horodniceanu, F., Kourilsky, P., and Garapin, A. C.: Cloning of the active thymidine kinase gene of herpes simplex virus type 1 in Escherichia Coli K-12. Proc Natl Acad Sci USA 76: 3755–3759, 1979

    Google Scholar 

  • Davis, L. G., Dibner, M. D., and Battey, J. F.: Basic Methods in Molecular Biology: Elsevier, New York, 1986

    Google Scholar 

  • Del Val, M., Volkmer, H., Rothbard, J. B., Jonjic, S., Messerle, M., Schickedanz, J., Reddehase, M. J., and Koszinowski, U. H.: Molecular basis for cytolytic T-lymphocyte recognition of the murine cytomegalovirus immediate-early protein pp89. J Virol 62: 3965–3972, 1988

    Google Scholar 

  • Demotz, S., Grey, H. M., and Sette, A.: The minimal number of class II MHC-antigen complexes needed for T cell activation. Science 249: 1028–1030, 1990

    Google Scholar 

  • De Plaen, E., Lurquin, C., Van Pel, A., Mariamé, B., Szikora, J.-P., Wölfel, T., Sibille, C., Chomez, P., and Boon, T.: Immunogenic (tum) variants of mouse tumor P815: Cloning of the gene of tum antigen P91A and identification of the tum mutation. Proc Natl Acad Sci USA 85: 2274–2278, 1988

    Google Scholar 

  • Espevik, T. and Nissen-Meyer, J.: A highly sensitive cell line, WEHI 164 clone 13, for measuring cytotoxic factor/tumor necrosis factor from human monocytes. J Immunol Methods 95: 99–105, 1986

    Google Scholar 

  • Falk, K., Rötzschke, O., and Rammensee, H.-G.: Cellular peptide composition governed by major histocompatibility complex class I molecules. Nature 348: 248–251, 1990

    Google Scholar 

  • Frischauf, A.-M., Lehrach, H., Poustka, A., and Murray, N.: Lambda replacement vectors carrying polylinker sequences. J Mol Biol 170: 827–842, 1983

    Google Scholar 

  • Hansen, M. B., Nielsen, S. E., and Berg, K.: Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119: 203–210, 1989

    Google Scholar 

  • Heard, J.-M., Herbomel, P., Ott, M.-O., Mottura-Rollier, A., Weiss, M., and Yaniv, M.: Determinants of rat albumin promoter tissue specificity analyzed by an improved transient expression system. Mol Cell Biol 7: 2425–2434, 1987

    Google Scholar 

  • Israël, A., Kimura, A., Fournier, A., Fellous, M., and Kourilsky, P.: Interferon response sequence potentiates activity of an enhancer in the promoter region of a mouse H-2 gene. Nature 322: 743–746, 1986

    Google Scholar 

  • Kozak, M.: An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15: 8125–8132, 1987

    Google Scholar 

  • Lewin, B.: Units of transcription and translation: sequence components of heterogeneous nuclear RNA and messenger RNA. Cell 4: 77–93, 1975

    Google Scholar 

  • Ljunggren, H.-G., Stam, N. J., Öhlén, C., Neefjes, J. J., Höglund, P., Heemels, M.-T., Bastin, J., Schumacher, T. N. M., Townsend, A., Kärre, K., and Ploegh, H. L.: Empty MHC class I molecules come out in the cold. Nature 346: 476–480, 1990

    Google Scholar 

  • Lurquin, C., Van Pel, A., Mariamé, B., De Plaen, E., Szikora, J.-P., Janssens, C., Reddehase, M. J., Lejeune, J., and Boon, T.: Structure of the gene coding for tum transplantation antigen P91A. A peptide encoded by the mutated exon is recognized with Ld by cytolytic T cells. Cell 58: 293–303, 1989

    Google Scholar 

  • Mansour, S. L., Thomas, K. R., and Capecchi, M. R.: Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336: 348–352, 1988

    Google Scholar 

  • Maryanski, J. L. and Boon, T.: Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. IV. Analysis of variant-specific antigens by selection of antigen-loss variants with cytolytic T cell clones. Eur J Immunol 12: 406–412, 1982

    Google Scholar 

  • Maryanski, J. L., Van Snick, J., Cerottini, J.-C., and Boon, T.: Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. III. Clonal analysis of the syngeneic cytolytic T lymphocyte response. Eur J Immunol 12: 401–406, 1982

    Google Scholar 

  • Nakamaye, K. and Eckstein, F.: Inhibition of restriction endonuclease Nci I cleavage by phosphorothioate groups and its application to oligonucleotide-directed mutagenesis. Nucleic Acids Res 14: 9679–9698, 1986

    Google Scholar 

  • Nicolas, J. F. and Berg, P.: Regulation of expression of genes transduced into embryonal carcinoma cells. Cold Spring Harbor Conferences Cell Prolif 10: 469–485, 1983

    Google Scholar 

  • Peabody, D. S. and Berg, P.: Termination-reinitiation occurs in the translation of mammalian cell mRNAs. Mol Cell Biol 6: 2695–2703, 1986

    Google Scholar 

  • Perucho, M., Hanahan, D., and Wigler, M.: Genetic and physical linkage of exogenous sequences in transformed cells. Cell 22: 309–317, 1980

    Google Scholar 

  • Rötzschke, O., Falk, K., Wallny, H.-J., Faath, S., and Rammensee, H.-G.: Characterization of naturally occuring minor histocompatibility peptides including H-4 and H-Y. Science 249: 283–287, 1990

    Google Scholar 

  • Ryser, J.-E., Cerottini, J.-C., and Brunner, K. T.: Generation of cytolytic T lymphocytes in vitro. IX. Induction of secondary CTL responses in primary long-term MLC by supernatants from secondary MLC. J Immunol 120: 370–377, 1978

    Google Scholar 

  • Sambrook, J., Fritsch, E. F., and Maniatis, T.: Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989

    Google Scholar 

  • Schøller, J.: Construction of novel eukaryotic transfection-vector, pJNL-1. Nucleic Acids Res 16: 769, 1988

    Google Scholar 

  • Sibille, C., Chomez, P., Wildmann, C., Van Pel, A., De Plaen, E., Maryanski, J. L., de Bergeyck, V., and Boon, T.: Structure of the gene of tum transplantation antigen P198: a point mutation generates a new antigenic peptide. J Exp Med 172: 35–45, 1990

    Google Scholar 

  • Szikora, J.-P., Van Pel, A., Brichard, V., André, M., Van Baren, N., Henry, P., De Plaen, E., and Boon, T.: Structure of the gene of tum transplantation antigen P35B: presence of a point mutation in the antigenic allele. EMBO J 9: 1041–1050, 1990

    Google Scholar 

  • Thomas, K. R., Folger, K. R., and Capecchi, M. R.: High frequency targeting of genes to specific sites in the mammalian genome. Cell 44: 419–428, 1986

    Google Scholar 

  • Townsend, A. and Bodmer, H.: Antigen recognition by class I-restricted T-lymphocytes. Annu Rev Immunol 7: 601–624, 1989

    Google Scholar 

  • Townsend, A., Rothbard, J., Gotch, F., Bahadur, G., Wraith, D., and McMichael, J.: The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 44: 959–968, 1986

    Google Scholar 

  • Townsend, A., Öhlén, C., Bastin, J., Ljunggren, H. G., Foster, L., and Kärre, K.: Association of class I major histocompatibility heavy and light chains induced by viral peptides. Nature 340: 443–448, 1989

    Google Scholar 

  • Traversi, C., van den Bruggen, P., Van den Eynde, B., Hainaut, P., Lemoine, N., Ohta, N., Old, L., Boon, T.: Transfection and expression of a gene coding for a human melanoma antigen recognized by autologous cytolytic T lymphocytes. Immunogenetics 35: 145–152, 1992

    Google Scholar 

  • Uyttenhove, C., Van Snick, J., and Boon, T.: Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. I. Rejection by syngeneic mice. J Exp Med 152: 1175–1183, 1980

    Google Scholar 

  • Van Pel, A., De Plaen, E., and Boon, T.: Selection of highly transfectable variant from mouse mastocytoma P815. Somatic Cell Genet 11: 467–475, 1985

    Google Scholar 

  • Wagner, M. J., Sharp, J. A., and Summers, W. C.: Nucleotide sequence of the thymidine kinase gene of herpes simplex virus type 1. Proc Natl Acad Sci USA 78: 1441–1445, 1981

    Google Scholar 

  • Wölfel, T., Van Pel, A., De Plaen, E., Lurquin, C., Maryanski, J. L., and Boon, T.: Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. VIII. Detection of stable transfectants expressing a tum antigen with a cytolytic T cell stimulation assay. Immunogenetics 26: 178–187, 1987

    Google Scholar 

  • Yewdell, J. W. and Bennink, J. R.: Brefeldin A specifically inhibits presentation of protein antigens to cytotoxic T lymphocytes. Science 244: 1072–1075, 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Address correspondence and offprint requests to: T. Boon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chomez, P., De Plaen, E., Van Pel, A. et al. Efficient expression of tum antigen P91A by transfected subgenic fragments. Immunogenetics 35, 241–252 (1992). https://doi.org/10.1007/BF00166829

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00166829

Keywords

Navigation