Skip to main content
Log in

Kinetics and mechanism of the oxidation of hydrogen peroxide by the octacyanotungstate(V) ion in alkaline aqueous media

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

The oxidation of H2O2 by [W(CN)8]3− has been studied in aqueous media between pH 7.87 and 12.10 using both conventional and stopped-flow spectrophotometry. The reaction proceeds without generation of free radicals. The experimental overall rate law, \({{{\text{d[W(CN)}}_{\text{8}}^{{\text{4 - }}} ]} \mathord{\left/ {\vphantom {{{\text{d[W(CN)}}_{\text{8}}^{{\text{4 - }}} ]} {{\text{d}}t = 2(k_s [{\text{H}}_{\text{2}} {\text{O}}_{\text{2}} ])[{\text{W(CN)}}_{\text{8}}^{{\text{3 - }}} ]}}} \right. \kern-\nulldelimiterspace} {{\text{d}}t = 2(k_s [{\text{H}}_{\text{2}} {\text{O}}_{\text{2}} ])[{\text{W(CN)}}_{\text{8}}^{{\text{3 - }}} ]}}\), strongly suggests two types of mechanisms. The first pathway, characterized by the pH-dependent rate constant k s, given by \({{2k_s = (k_{\text{a}} + k_{\text{b}} K_5 [{\text{H}}^{\text{ + }} ]^{ - 1} )} \mathord{\left/ {\vphantom {{2k_s = (k_{\text{a}} + k_{\text{b}} K_5 [{\text{H}}^{\text{ + }} ]^{ - 1} )} {[1 + K_5 [{\text{H}}^{\text{ + }} ]^{ - 1} )(}}} \right. \kern-\nulldelimiterspace} {[1 + K_5 [{\text{H}}^{\text{ + }} ]^{ - 1} )(}}1 + K_{{\text{a1}}} [{\text{H}}^{\text{ + }} ]^{ - 1} )^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ]\), involves the formation of [W(CN)8· H2O2]3−, [W(CN)8· H2O2·W(CN)8]6− and [W(CN)8· HO]3− intermediates in rapid pre-equilibria steps, and is followed by a one-electron transfer step involving [W(CN)8·HO]3− (k a) and its conjugate base [W(CN)8·O]4− (k b). At 25 °C, I = 0.20 m (NaCl), the rate constant \(k_{\text{a}} = (8.0 \pm 0.9) \times 10^{ - 3} {\text{M}}^{{{\text{1}} \mathord{\left/ {\vphantom {{\text{1}} {\text{2}}}} \right. \kern-\nulldelimiterspace} {\text{2}}}} {\text{S}}^{{\text{ - 1}}} \) with ΔH a =40±6kJmol−1 and ΔS a =−151±22JK−1mol−1; the rate constant \(k_b = 0.22 \pm 0.03{\text{M}}^{{{{\text{ - 1}}} \mathord{\left/ {\vphantom {{{\text{ - 1}}} {\text{2}}}} \right. \kern-\nulldelimiterspace} {\text{2}}}} {\text{S}}^{{\text{ - 1}}} \) with ΔH b =36±1kJmol−1 and ΔS b =−136±2JK−1mol−1 at 25 °C, I = 0.20 m (NaCl); the acid dissociation constant of [W(CN)8·HO]3−, K 5 =(5.9±1.7)×10−10 m, with \(\Delta H_{K_5 }^ = 18 \pm 5{\text{kJ mol}}^{{\text{ - 1}}} \) and \(\Delta S_{K_5 }^ = - 117 \pm 23{\text{JK}}^{{\text{ - 1}}} {\text{mol}}^{{\text{ - 1}}} \) is the first acid dissociation constant of H2O2. The second pathway, with rate constant, k f, involves the formation of [W(CN)8· HO2]4− and is followed by a formal two-electron redox process with [W(CN)8]3−. The pH-dependent rate constant, k f, is given by \({{2k_{\text{f}} = 2k_{\text{7}} } \mathord{\left/ {\vphantom {{2k_{\text{f}} = 2k_{\text{7}} } {(1 + K_{{\text{a1}}}^{{\text{ - 1}}} [{\text{H}}^{\text{ + }} ])}}} \right. \kern-\nulldelimiterspace} {(1 + K_{{\text{a1}}}^{{\text{ - 1}}} [{\text{H}}^{\text{ + }} ])}}\). The rate constant k 7 =23±6m −1 s −1 with \(\Delta H_{K_7 }^\ddag = 9 \pm 2{\text{kJ mol}}^{{\text{ - 1}}} \) and \(\Delta S_{K_7 }^\ddag = - 188 \pm 7{\text{JK}}^{{\text{ - 1}}} {\text{ mol}}^{{\text{ - 1}}} \) at 25°C, I = 0.20 m (NaCl).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Sieklucka, Progr. React. Kinet., 15, 175 (1989); and refs cited therein.

    Google Scholar 

  2. J. G. Leipoldt, S. S. Basson and A. Roodt, Adv. Inorg. Chem., 40, 241 (1993); and refs cited therein.

    Google Scholar 

  3. A. Samotus and J. Szklarzewicz, Coord. Chem. Rev., 125, 63 (1993).

    Google Scholar 

  4. B. Sieklucka, Inorg. Chim. Acta, 186, 179 (1991).

    Google Scholar 

  5. B. Sieklucka and A. Samotus, J. Photochem. Photobiol. A: Chem., 74, 115 (1993); and refs cited therein.

    Google Scholar 

  6. B. Sieklucka, A. Kanas and A. Samotus, Transition Met. Chem., 7, 131 (1982).

    Google Scholar 

  7. M. Bogdanov, R. Gryboś, A. Samotus and K. Bogolitsyn, Transition Met. Chem., 18, 599 (1993).

    Google Scholar 

  8. B. Sieklucka, M. Bogdanov, R. Gryboś and A. Samotus in G. Ondrejovič and A. Sirota (Eds), Contributions to Development of Coordination Chemistry, Slovak Technical University Press, Brastislava, 1993, p. 373.

    Google Scholar 

  9. A. Kanas and A. Samotus, in Proc. 9th Conf. Coord. Chem., Smolenice, Czechoslovakia 1983, p. 163.

  10. J. Sobkowski, Rocz. Chem., 43, 1729 (1969).

    Google Scholar 

  11. D. Zehavi and J. Rabani, J. Phys. Chem., 76, 3703 (1972).

    Google Scholar 

  12. A. Samotus, Rocz. Chem., 47, 265 (1973).

    Google Scholar 

  13. G. Evans and N. Uri, Trans. Faraday. Soc., 45, 224 (1949).

    Google Scholar 

  14. F. J. Kristine, C. R. Johnson, S. O'Donnel and R. E. Shepherd, Inorg. Chem., 19, 2280 (1980).

    Google Scholar 

  15. N. W. Alcock, A. Samotus and J. Szklarzewicz, J. Chem. Soc., Dalton Trans., 885 (1993).

  16. J. Rabani and M. S. Matheson, J. Am. Chem. Soc., 86, 3175 (1964).

    Google Scholar 

  17. R. G. Wilkins, Kinetics and Mechanism of Reactions of Transition Metal Complexes, 2nd Edit., VCH Weinheim, 1991.

    Google Scholar 

  18. J. Szklarzewicz, A. Samotus and A. Kanas, Polyhedron, 5, 1733 (1986).

    Google Scholar 

  19. J. O. M. Bockris and L. F. Oldfield, Trans. Faraday Soc., 51, 249 (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sieklucka, B., Samotus, A. Kinetics and mechanism of the oxidation of hydrogen peroxide by the octacyanotungstate(V) ion in alkaline aqueous media. Transition Met Chem 21, 226–230 (1996). https://doi.org/10.1007/BF00165972

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00165972

Keywords

Navigation