Skip to main content
Log in

Source reconciliation of atmospheric aerosols

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Multivariate regression analysis was used to determine the major emission sources contributing to suspended particulates in air collected over a small mixed land use watershed. Aerosol samples were collected at 5 different land use types in 1976 and 1977 and analyzed for 10 elements. Aerosol composition was then compared to emission source composition to obtain the relative contribution by each emission source. Two examples of source reconciliation by multivariate regression analysis for typical samples are given. An industrial land use type clearly shows increased contributions from anthropogenic activity when compared to a rural site only 15 km distant in a crosswind direction. Differences in calculated and measured ambient aerosol concentrations can lead to specific interpretations about emission sources. The implications of errors in concentration data are discussed. A weighting technique can aid in correcting problems caused by incomplete or inaccurate data for 1 or 2 elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andren, A. W. and Lindberg, S. E.: 1977, Water, Air, Soil Pollut. 8, 199.

    Google Scholar 

  • Andren, A. W. and Strand, J. W.: 1981, ‘Atmospheric Deposition of Particulate Organic Carbon and Polyaromatic Hydrocarbons to Lake Michigan’, in S. Eisenreich (ed.), Atmospheric Pollutants in Natural Waters, Ann Arbor Science, Inc., Chapter 23.

  • Friedlander, S. K.: 1971, Conference ‘Science in the Control of Smog’, Pasadena, CA.

  • Friedlander, S. K.: 1973, Environ. Sci. Technol. 7, 235.

    Google Scholar 

  • Gartrell, G., Jr. and Friedlander, S. K.: 1975, Atmos. Environ. 9, 279.

    Google Scholar 

  • Gatz, D. F.: 1975, Atmos. Environ. 9, 1.

    Google Scholar 

  • Greenberg, R. R., Gordon, G. E., and Zoller, W. H.: 1978, Environ. Sci. Technol. 12, 1329.

    Google Scholar 

  • Hopke, P. K.: 1980, Ann. N. Y. Acad. Sci. 338, 103.

    Google Scholar 

  • Klein, D. H., Andren, A. W., Carter, J. A., Emery, J. F., Feldman, C., Fulkerson, W., Lyon, W. S., Ogle, J. C., Talmi, Y., Van Hook, R. L, and Bolton, N.: 1975, Environ. Sci. Technol. 9, 973.

    Google Scholar 

  • Kleinman, M. T., Pasternack, B. S., Eisenbud, M., and Kneip, T. J.: 1980, Environ. Sci. Technol. 14, 62.

    Google Scholar 

  • Mayrsohn, H. and Crabtree, J. H.: 1976, Atmos. Environ. 10, 137.

    Google Scholar 

  • Miller, M. S., Friedlander, S. K., and Hidy, G. M.: 1972, J. Colloid Interface Sci. 39, 165.

    Google Scholar 

  • Murphy, T. J.: 1974, Sources of Phosphorus Inputs from the Atmosphere and their Significance to Oligotrophic Lakes, Research Report No. 92, Water Resources Center, University of Illinois, Urbana, Illinois.

    Google Scholar 

  • Stolzenburg, T. S.: 1979, Metallic Composition ofAerosols over the Menomonee River Watershed, Ph.D Thesis, University of Wisconsin, Madison, Wisconsin.

    Google Scholar 

  • Stolzenburg, T. S. and Andren, A. W.: 1980, Anal. Chim. Acta 118, 377.

    Google Scholar 

  • Stolzenburg, T. S. and Andren, A. W.: 1981, Water, Air, Soil Pollut. 15, 243.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stolzenburg, T.R., Andren, A.W. & Stolzenburg, M.R. Source reconciliation of atmospheric aerosols. Water Air Soil Pollut 17, 75–85 (1982). https://doi.org/10.1007/BF00164093

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00164093

Keywords

Navigation