Skip to main content
Log in

Spatial frequency of the human short-wavelength-sensitive (blue) cone mechanism

Psychophysical studies and pattern-reversal visual evoked potentials

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

The interactions of spatial and chromatic processing of the short-wavelength-sensitive cone mechanism were studied in humans with patterned (checkerboard) stimuli of various spatial frequency (10, 22, 44, and 85 min of arc respectively), under steady exposure to yellow light (575 nm, 390 cd/m2). Psychophysical studies and pattern-reversal visual evoked potentials were employed. Parameters of the transient pattern-reversal visual evoked potentials (pattern reversal rate of 2.4 s−1) especially observed were the latencies of P2 (P100) and N3 and the amplitude of P2-N3. It was only with the largest applicable check size (85 min of arc) that both the psychophysical studies and visual evoked potentials could succeed in satisfactorily isolating the short-wavelength-sensitive cone mechanism. Pattern-reversal visual evoked potential latencies are recommended in the evaluation of this cone mechanism because of their smaller variance and higher selectivity in isolating the short-wavelength-sensitive cone mechanism than the amplitude. The peak sensitivity of this cone mechanism was shown to be at about 449 nm at the corneal level. The short-wavelength sensitive cone mechanism represented the characteristics of low spatial resolution and long latencies of the pattern-reversal visual evoked potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LERG:

luminance electroretinograms

LVEP:

luminance visual evoked potentials

LWS:

long-wavelength-sensitive

MWS:

medium-wavelength-sensitive

P-VEP:

pattern-reversal visual evoked potentials

SWS:

short-wavelength-sensitive

References

  1. Zrenner E. What is special about the blue cone mechanism? In: Zrenner E, ed. Neurophysiological aspects of color vision in primates. Berlin: Springer-Verlag, 1983: 81–88.

    Google Scholar 

  2. Dartnall HJA, Bowmaker JK, Mollon JD. Microspectrophotometry of human photoreceptors. In: Mollon JD, Sharpe LT, eds. Colour vision: physiology and psychophysics. London: Academic Press, 1983: 69–80.

    Google Scholar 

  3. Gouras P. Color vision. In: Osborne NN, Chader GJ, eds. Retinal research, Vol. 3. Oxford: Pergamon Press, 1984: 236–38.

    Google Scholar 

  4. Marc RE, Sperling HG. Chromatic organization of primate cones. Science 1977; 196: 454–456.

    Google Scholar 

  5. Hood DC, Benimoff NI, Greenstein VC. The response range of the blue-cone pathways: a source of vulnerability to disease. Invest Ophthalmol Vis Sci 1984; 25: 864–67.

    Google Scholar 

  6. Mollon JD. A taxonomy of tritanopias. Doc Ophthalmol Proc Ser 1982; 33: 87–101.

    Google Scholar 

  7. Zisman F, Adams AJ, Spectral sensitivity of cone mechanisms in juvenile diabetics. Doc Ophthalmol Proc Ser 1982; 33: 127–31.

    Google Scholar 

  8. Zrenner E. Electrophysiological characteristics of the blue sensitive mechanism: test of a model of cone interaction under physiological and pathological conditions. Doc Ophthalmol Proc Ser 1982; 33: 103–25.

    Google Scholar 

  9. Stiles WS. Increment thresholds and the mechanisms of colour vision. Doc Ophthalmol 1949; 3: 138–65.

    Google Scholar 

  10. Stiles WS. Color vision: the approach through increment threshold sensitivity. Proc Natl Acad Sci 1959; 45: 100–14.

    Google Scholar 

  11. Wald G. The receptors of human color vision: action spectra of three visual pigments in human cones account for normal color vision and color-blindness. Science 1964; 145: 1007–17.

    Google Scholar 

  12. Ksinsik R. Adaptive Parameter der Blauverschiebung der Spektralsensitivitaet des Kaninchenauges. Graefes Arch Clin Exp Ophthalmol 1967; 172: 112–24.

    Google Scholar 

  13. Zrenner E, Gouras P. Blue-sensitive cones of the cat produce a rodlike electroretinogram. Invest Ophthalmol Vis Sci 1979; 18: 1076–81.

    Google Scholar 

  14. Boynton RM, Whitten DN. Selective chromatic adaptation in primate photoreceptors. Vision Res 1972; 12: 855–74.

    Google Scholar 

  15. Evers HU, Gouras P. Three cone mechanisms in the primate electroretinogram: two with, one without off-center bipolar responses. Vision Res 1986; 26: 245–54.

    Google Scholar 

  16. Gouras P. Electroretinography: some basic principles. Invest Ophthalmol 1970; 9: 557–69.

    Google Scholar 

  17. Mehaffey L, Berson EL. Cone mechanisms in the electroretinogram of the cynomolgus monkey. Invest Ophthalmol 1974; 13: 266–73.

    Google Scholar 

  18. Norren D van, Padmos P. Human and macaque blue cones studied with electroretinography. Vision Res 1973; 13: 1241–54.

    Google Scholar 

  19. Padmos P, Norren D van. Cone spectral sensitivity and chromatic adaptation as revealed by human flicker electroretinography. Vision Res 1971; 11: 27–42.

    Google Scholar 

  20. Padmos P, Norren D van, Jaspers Faijer JW. Blue cone function in a family with an inherited tritan defect tested with electroretinography and psychophysics. Invest Ophthalmol Vis Sci 1978; 17: 436–41.

    Google Scholar 

  21. Sawusch M, Pokorny J, Smith VC. Clinical electroretinography for short wavelength sensitive cones. Invest Ophthalmol Vis Sci 1987; 28: 966–74.

    Google Scholar 

  22. Adachi-Usami E, Heck J, Gavriysky V, Kellermann FJ. Spectral sensitivity function determined by the visually evoked cortical potential in several classes of color deficiency (cone monochromatism, rod monochromatism, protanopia, deuteranopia). Ophthalmic Res 1974; 6: 273–90.

    Google Scholar 

  23. Huber C. Visual evoked responses during exposure to strong colored lights. Ophthalmic Res 1972; 3: 55–62.

    Google Scholar 

  24. Jankov E. Spektralsensitivität der off-Antwort im menschlichen VECP bei verschiedenfarbiger Adaptation. Graefes Arch Clin Exp Ophthalmol 1978; 206: 121–33.

    Google Scholar 

  25. Jankov E. New observations on the violet mechanism in man as revealed by the VECP. Acta Physiol Pharmacol Bulg 1988; 14: 68–76.

    Google Scholar 

  26. Kellermann FJ, Adachi-Usami E. Spectral sensitivities of colour mechanisms isolated by the human visual evoked response. Ophthalmic Res 1972/73; 4: 199–210.

    Google Scholar 

  27. Krauskopf J. Contributions of the primary chromatic mechanisms to the generation of visual evoked potentials. Vision Res 1973; 13: 2289–98.

    Google Scholar 

  28. Zrenner E, Kojima M. Visually evoked cortical potential (VECP) in dichromats. In: Streiff EB, ed. Modern problems in ophthalmology, Vol. 17. Basel: Karger, 1976: 241–46.

    Google Scholar 

  29. Arden GB. The importance of measuring contrast sensitivity in cases of visual disturbance. Br J Ophthalmol 1978; 62: 198–209.

    Google Scholar 

  30. Livingstone M, Hubel D. Anatomy and physiology of a color system in the primate visual cortex. J Neurosci 1984; 4: 309–56.

    Google Scholar 

  31. Land EH. Recent advances in Retinex theory. Vision Res 1986; 26: 7–21.

    Google Scholar 

  32. Niepel G, Dodt E. Pattern electroretinogram of the blue cones. Graefes Arch Clin Exp Ophthalmol 1989; 227; 45–50.

    Google Scholar 

  33. Lowitzsch K. Visuell evozierte Potentiale. In: Lowitzsch K, Maurer K, Hopf HC. Evozierte Potentiale in der Klinischen Diagnostik. Stuttgart: Georg Thieme Verlag, 1983: 32–33.

    Google Scholar 

  34. Siegfried JB. VECP: its spectral sensitivity. In: Armington JC, Krauskopf J, Wooten BR, eds. Visual psychophysics and physiology. New York: Academic Press, 1978: 257–66.

    Google Scholar 

  35. King-Smith PE, Carden D. Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration. J Opt Soc Am 1976; 66: 709–17.

    Google Scholar 

  36. Shipley T, Jones RW, Fry A. Spectral analysis of the visually evoked occipitogram in man. Vision Res 1968; 8: 409–31.

    Google Scholar 

  37. Zeki S. The representation of colours in the cerebral cortex. Nature 1980; 284: 412–18.

    Google Scholar 

  38. Brindley GS, Du Croz JJ, Rushton WAH. The flicker fusion frequency of the blue-sensitive mechanism of colour vision. J Physiol 1966; 183: 497–500.

    Google Scholar 

  39. Burkhardt DA, Riggs LA. Modification of the human visual evoked potential by monochromatic backgrounds. Vision Res 1967; 7: 453–59.

    Google Scholar 

  40. Green DG. Sinusoidal flicker characteristics of the color-sensitive mechanisms of the eye. Vision Res 1969; 9: 591–601.

    Google Scholar 

  41. Kelly DH. Spatio-temporal frequency characteristics of color-vision mechanisms. J Opt Soc Am 1974; 64: 983–90.

    Google Scholar 

  42. Regan D. Chromatic adaptation and steady-state evoked potentials. Vision Res 1968; 8: 149–58.

    Google Scholar 

  43. Stockman A, MacLeod DIA, DePriest DD. The temporal properties of the human short-wave photoreceptors and their associated pathways. Vision Res 1991; 31: 189–208.

    Google Scholar 

  44. Cavonius CR, Estévez O. Contrast sensitivity of individual color mechanisms of human vision. J Physiol 1975; 248: 649–62.

    Google Scholar 

  45. Green DG. The contrast sensitivity of the color mechanisms of the human eye. J Physiol 1968; 196: 415–29.

    Google Scholar 

  46. Green DG. Visual acuity in the blue cone monochromat. J Physiol 1972; 222: 419–26.

    Google Scholar 

  47. Mollon JD, Krauskopf J. Reaction time as a measure of the temporal response properties of individual color mechanisms. Vision Res 1973; 13: 27–40.

    Google Scholar 

  48. Michael WF, Halliday AM. Differences between the occipital distribution of upper and lower field pattern-evoked responses in man. Brain Res 1971; 34: 311–24.

    Google Scholar 

  49. Cavanagh P, MacLeod DIA, Anstis SM. Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones. J Opt Soc Am 1987; 4A: 1428–38.

    Google Scholar 

  50. Eisner A, MacLeod DIA. Flicker photometric study of chromatic adaptation: selective suppression of cone inputs by colored backgrounds. J Opt Soc Am 1981; 71: 705–18.

    Google Scholar 

  51. Gouras P, Eggers H. Ganglion cells mediating the signals of blue sensitive cones in primate retina detect white-yellow borders independently of brightness. Vision Res 1982; 22: 675–79.

    Google Scholar 

  52. Walraven J. Colour signals from incremental and decremental light stimuli. Vision Res 1977; 17: 71–76.

    Google Scholar 

  53. Walraven J. Perceived colour under conditions of chromatic adaptation: evidence for gain control by II mechanisms. Vision Res 1981; 21: 611–620.

    Google Scholar 

  54. Verdon W, Adams AJ. Short-wavelength-sensitive cones do not contribute to mesopic luminosity. J Opt Soc Am 1987; 4: 91–95.

    Google Scholar 

  55. Adachi-Usami E, Kellermann FJ. Spatial summation of retinal excitation as obtained by the scotopic VECP and the sensory threshold. Ophthalmic Res 1973; 5: 308–16.

    Google Scholar 

  56. Adachi-Usami E. Incremental threshold as obtained by the visually evoked cortical potential (VECP). Ophthalmic Res 1974; 6: 55–63.

    Google Scholar 

  57. DeVoe RG, Ripps H, Vaughan HG. Cortical responses to stimulation of the human fovea. Vision Res 1968; 8: 135–47.

    Google Scholar 

  58. Estévez O, Spekreijse H. A spectral compensation method for determining the flicker characteristics of the human colour mechanisms. Vision Res 1974; 14: 823–30.

    Google Scholar 

  59. Estévez O, Spekreijse H. The ‘silent substitution’ method in visual research. Vision Res 1982; 22: 681–91.

    Google Scholar 

  60. Estévez O, Spekreijse H, Van Den Berg TJTP, Cavonius CR. The spectral sensitivities of isolated human color mechanisms determined from contrast evoked potential measurements. Vision Res 1975; 15: 1205–12.

    Google Scholar 

  61. Gouras P, MacKay CJ. Electroretinographic responses of the short-wavelength-sensitive cones. Invest Ophthalmol Vis Sci 1990; 31: 1203–09.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, L., Shen, F. & Dodt, E. Spatial frequency of the human short-wavelength-sensitive (blue) cone mechanism. Doc Ophthalmol 77, 165–183 (1991). https://doi.org/10.1007/BF00161365

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00161365

Key words

Navigation